
MOUNTING AND OPERATING INSTRUCTIONS

EB 3007 EN

Translation of original instructions

Type 42-20 and Type 42-25 Differential Pressure Regulators Self-operated Regulators · Opening Actuator

Note on these mounting and operating instructions

These mounting and operating instructions assist you in mounting and operating the device safely. The instructions are binding for handling SAMSON devices. The images shown in these instructions are for illustration purposes only. The actual product may vary.

- → For the safe and proper use of these instructions, read them carefully and keep them for later reference.
- → If you have any questions about these instructions, contact SAMSON's After-sales Service (aftersalesservice@samsongroup.com).

The mounting and operating instructions for the devices are included in the scope of delivery. The latest documentation is available on our website at www.samsongroup.com > Downloads > Documentation.

Definition of signal words

DANGER

Hazardous situations which, if not avoided, will result in death or serious injury

A WARNING

Hazardous situations which, if not avoided, could result in death or serious injury

• NOTICE

Property damage message or malfunction

Additional information

Recommended action

1	Safety instructions and measures	1-1
1.1	Notes on possible severe personal injury	1-4
1.2	Notes on possible personal injury	1-5
1.3	Notes on possible property damage	1-7
2	Markings on the device	2-1
2.1	Nameplates	2-1
2.2	Location of the nameplates	2-2
2.3	Material identification number	2-2
2.3.1	Type 2422 Valve	2-2
2.3.2	Type 2420 and Type 2425 Actuators	2-2
3	Design and principle of operation	3-1
3.1	Additional fittings	
3.2	Technical data	3-5
4	Shipment and on-site transport	4-1
4.1	Accepting the delivered goods	4-1
4.2	Removing the packaging from the regulator	
4.3	Transporting and lifting the regulator	4-2
4.3.1	Transporting the regulator	4-2
4.3.2	Lifting the regulator	4-3
4.4	Storing the regulator	4-4
5	Installation	5-1
5.1	Installation conditions	5-1
5.2	Preparation for installation	5-4
5.3	Installation	5-6
5.3.1	Installing the regulator	5-7
5.4	Testing the regulator	5-8
5.4.1	Leakage	5-8
5.4.2	Pressure test	5-9
5.4.3	Filling the plant	5-10
5.4.4	Cleaning the pipeline	5-11
5.5	Insulation	5-11
6	Start-up	6-1
6.1	Start-up and putting the regulator back into operation	6-1
6.2	Starting up the plant	6-2
7	Operation	7-1
7.1	Adjusting the differential pressure set point	

Contents

8	Malfunctions	8-1
8.1	Troubleshooting	
8.2	Emergency action	8-3
9	Servicing	9-1
9.1	Preparing the valve for service work	9-5
9.2	Installing the regulator after service work	9-5
9.3	Service work	9-5
9.4	Replacing the actuator	9-6
9.5	Replacing the seat and plug	9-6
9.6	Replacing the actuator's operating diaphragm	9-6
9.6.1	Type 2420 Actuator	9-6
9.6.2	Type 2425 Actuator	
9.7	Ordering spare parts and operating supplies	9-8
10	Decommissioning	10-1
11	Removal	11-1
11.1	Removing the regulator from the pipeline	11-1
11.2	Removing the actuator from the valve	
12	Repairs	12-1
12.1	Returning devices to SAMSON	
13	Disposal	13-1
14	Certificates	14-1
15	Appendix	15-1
15.1	Tightening torques	
15.2	Lubricant	15-1
15.3	Tools	15-1
15.4	Accessories	15-1
15.5	Spare parts	15-2
15.6	After-sales service	15-6

1 Safety instructions and measures

Intended use

The SAMSON Type 42-20 and Type 42-25 Regulators are differential pressure regulators. They consist of a Type 2422 Valve and a Type 2420 Actuator (Type 42-20) or a Type 2425 Actuator (Type 42-25). These regulator components are delivered separately.

The self-operated regulators are used to control the differential pressure in plants. Liquids, gases and vapors in district heating system, extended heating systems or industrial plants can be controlled by the regulators.

The regulators are designed to operate under exactly defined conditions (e.g. operating pressure, process medium, temperature). Therefore, operators must ensure that the regulators are only used in operating conditions that meet the specifications used for sizing the devices at the ordering stage. In case operators intend to use the regulators in applications or conditions other than those specified, contact SAMSON.

SAMSON does not assume any liability for damage resulting from the failure to use the device for its intended purpose or for damage caused by external forces or any other external factors.

→ Refer to the technical data and nameplate for limits and fields of application as well as possible uses.

Reasonably foreseeable misuse

The regulators are not suitable for the following applications:

- Use outside the limits defined during sizing and by the technical data
- Use outside the limits defined by the additional fittings mounted on the regulator

Furthermore, the following activities do not comply with the intended use:

- Use of non-original spare parts
- Performing service and repair work not described

Qualifications of operating personnel

The regulator must be mounted, started up, serviced and repaired by fully trained and qualified personnel only; the accepted industry codes and practices must be observed. According to these mounting and operating instructions, trained personnel refers to individuals who are able to judge the work they are assigned to and recognize possible hazards due to their specialized training, their knowledge and experience as well as their knowledge of the applicable standards.

Safety instructions and measures

Personal protective equipment

SAMSON recommends checking the hazards posed by the process medium being used (e.g. • GESTIS (CLP) hazardous substances database). Depending on the process medium and/ or the activity, the protective equipment required includes:

- Protective clothing, safety gloves and eye protection in applications with hot, cold and/or corrosive media
- Wear hearing protection when working near the valve. Follow the instructions given by the plant operator.
- Hard hat
- Safety harness, e.g. when working at height
- Safety footwear, if applicable ESD (electrostatic discharge) footwear
- → Check with the plant operator for details on further protective equipment.

Revisions and other modifications

Revisions, conversions or other modifications of the product are not authorized by SAMSON. They are performed at the user's own risk and may lead to safety hazards, for example. Furthermore, the product may no longer meet the requirements for its intended use.

Warning against residual hazards

To avoid personal injury or property damage, plant operators and operating personnel must prevent hazards that could be caused in the regulator by the process medium, the operating pressure or by moving parts by taking appropriate precautions. Plant operators and operating personnel must observe all hazard statements, warnings and caution notes in these mounting and operating instructions.

Hazards resulting from the special working conditions at the installation site of the regulator must be identified in a risk assessment and prevented through the corresponding standard operating procedures drawn up by the operator.

SAMSON also recommends checking the hazards posed by the process medium being used (e.g. > GESTIS (CLP) hazardous substances database).

→ Observe safety measures for handling the device as well as fire prevention and explosion protection measures.

These mounting and operating instructions deal with the standard version of the device. Components of the device that differ to those used for the standard version described in this document can be exchanged with other certain SAMSON components. The residual hazards of these components are described in the associated mounting and operating instructions (see section 'Referenced documents').

1-2 EB 3007 EN

Safety features

The Types 42-20 and 42-25 Regulators do not have any special safety features. When relieved of pressure, the regulators are closed by the force of the set point springs.

Responsibilities of the operator

Operators are responsible for proper use and compliance with the safety regulations. Operators are obliged to provide these mounting and operating instructions as well as the referenced documents to the operating personnel and to instruct them in proper operation. Furthermore, operators must ensure that operating personnel or third parties are not exposed to any danger.

Operators are additionally responsible for ensuring that the limits for the product defined in the technical data are observed. This also applies to the start-up and shutdown procedures. Start-up and shutdown procedures fall within the scope of the operator's duties and, as such, are not part of these mounting and operating instructions. SAMSON is unable to make any statements about these procedures since the operative details (e.g. differential pressures and temperatures) vary in each individual case and are only known to the operator.

Responsibilities of operating personnel

Operating personnel must read and understand these mounting and operating instructions as well as the referenced documents and observe the specified hazard statements, warnings and caution notes. Furthermore, operating personnel must be familiar with the applicable health, safety and accident prevention regulations and comply with them.

Referenced standards, directives and regulations

The regulators comply with the requirements of the European Pressure Equipment Directive 2014/68/EU and the Machinery Directive 2006/42/EC. Regulators with a CE marking have a declaration of conformity which includes information about the applied conformity assessment procedure. The declaration of conformity is included in the 'Certificates' chapter.

According to the ignition hazard assessment performed in accordance with Clause 5.2 of ISO 80079-36, the non-electrical regulators do not have their own potential ignition source even in the rare incident of an operating fault. As a result, they do not fall within the scope of Directive 2014/34/EU.

→ For connection to the equipotential bonding system, observe the requirements specified in Clause 6.4 of EN 60079-14 (VDE 0165-1).

Safety instructions and measures

Referenced documents

The following documents apply in addition to these mounting and operating instructions:

Mounting and operating instructions for

e.g.	Type 2 N or 2 NI Strainer	► EB 1015
Data s	heets for	
e.g.	Accessories · Differential pressure and flow regulators	► T 3095
e.g.	Type 2 N or 2 NI Strainer	▶ T 1015

 Mounting and operating instructions as well as data sheets for additional fittings (e.g. shut-off valves, pressure gauges etc.).

Notes on possible severe personal injury

A DANGER

Risk of bursting in pressure equipment.

Regulators and pipelines are pressure equipment. Impermissible pressure or improper opening of the pressure equipment can lead to regulator components bursting.

- → Observe the maximum permissible pressure for regulator and plant.
- → If necessary, a suitable overpressure protection must be installed on site in the plant section.
- → Before starting any work on the regulator, depressurize all plant sections affected as well as the regulator.
- → Drain the process medium from the plant sections affected as well as from the regulator
- → Wear personal protective equipment.

1-4 **EB 3007 EN**

1.2 Notes on possible personal injury

A WARNING

Risk of personal injury due to incorrect operation, use or installation as a result of information on the regulator being illegible.

Over time, markings, labels and nameplates on the regulator may become covered with dirt or become illegible in some other way. As a result, hazards may go unnoticed and the necessary instructions not followed. There is a risk of personal injury.

- → Keep all relevant markings and inscriptions on the device in a constantly legible state.
- → Immediately renew damaged, missing or incorrect nameplates or labels.

Risk of hearing loss or deafness due to loud noise.

The noise emissions depend on the valve version, plant facilities and process medium.

→ Wear hearing protection when working near the valve. Follow the instructions given by the plant operator.

Crush hazard arising from moving parts.

The regulator contains moving parts (set point springs), which can injure hands or fingers if inserted into the regulator.

- → Do not insert hands or fingers between the set point springs while the regulator is in operation.
- → Before performing any work on the regulator, depressurize the plant. Disconnect or shut off the control line

Risk of personal injury due to loaded springs.

The set point springs of regulators with adjusted set point are preloaded and are under tension.

→ Before starting any work on the springs, relieve the compression from the preloaded springs.

A WARNING

Risk of personal injury due to pressurized components and as a result of process medium being discharged.

Incorrect opening of pressure equipment or mounting parts may lead to the process medium escaping to the atmosphere.

- → Do not unscrew the control line while the valve is pressurized.
- → Do not start up the regulator until all parts have been mounted.

Risk of burn injuries due to hot or cold components and pipelines.

Depending on the process medium, regulator components and pipelines may get very hot or cold and cause burn injuries.

- → Allow components and pipelines to cool down or warm up to the ambient temperature
- → Wear protective clothing and safety gloves.

Damage to health relating to the REACH regulation.

If a SAMSON device contains a substance listed as a substance of very high concern on the candidate list of the REACH regulation, this is indicated on the SAMSON delivery note.

→ Information on the safe use of the part affected (www.samsongroup.com/en/about-samson/material-compliance/reach-regulation/).

Risk of personal injury due to residual process medium in the regulator.

While working on the regulator, residual process medium can escape and, depending on its properties, may lead to personal injury, e.g. (chemical) burns.

- → If possible, drain the process medium from the plant sections affected and from the regulator.
- → Wear protective clothing, safety gloves and eye protection.

1-6 EB 3007 EN

1.3 Notes on possible property damage

NOTICE

Risk of regulator damage due to incorrectly attached slings.

→ Do not attach load-bearing slings to the actuator housing (see section 'Lifting the regulator' in the 'Shipment and on-site transport' chapter).

Risk of regulator damage due to unsuitable medium properties.

The regulator is designed for a process medium with defined properties.

→ Only use the process medium specified for sizing the equipment.

Risk of regulator damage due to contamination (e.g. solid particles) in the pipeline.

The plant operator is responsible for cleaning the pipelines in the plant.

→ Flush the pipelines before start-up.

Risk of regulator damage due to the use of unsuitable lubricants.

The lubricants to be used depend on the regulator material. Unsuitable lubricants may corrode and damage surfaces.

→ Only use lubricants approved by SAMSON. When in doubt, consult SAMSON.

Risk of leakage and regulator damage due to over- or under-torquing.

Observe the specified torques when tightening regulator components. Excessive tightening torques lead to parts wearing out more quickly. Parts that are too loose may cause leakage.

→ Observe the specified tightening torques (see the 'Tightening torques' chapter in the Appendix).

Risk of regulator damage due to the use of unsuitable tools.

Certain tools are required to work on the regulator.

→ Only use tools approved by SAMSON. When in doubt, consult SAMSON.

NOTICE

Risk of the process medium being contaminated through the use of unsuitable lubricants and/or contaminated tools and components.

- → Keep the regulator and the tools used free from solvents and grease.
- → Make sure that only suitable lubricants are used.

Risk of excess pressure damaging plant sections due to construction-related seat leakage through the regulator.

→ Always install a safety device (e.g. safety excess pressure valve or safety relief valve) in the plant.

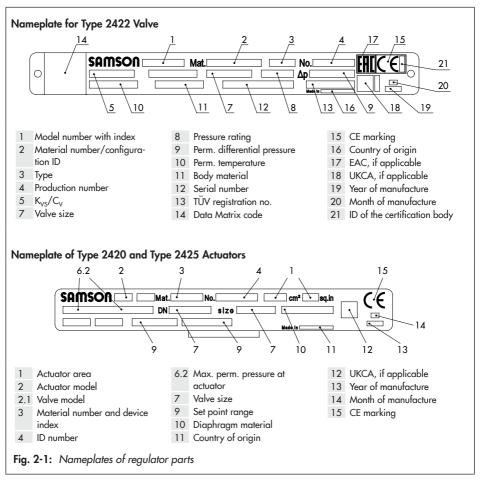
Incorrect control due to the formation of ice on the regulator.

Medium temperatures below 0 °C may cause ice to form on the regulator, depending on the air humidity. This may affect, in particular, the functioning of the plug or diaphragm stem guide.

→ Prevent the formation of ice by taking appropriate precautions (e.g. enclosure, trace heater etc.). The plant operator is responsible for selecting and implementing appropriate precautions (see the 'Installation' chapter).

i Note

SAMSON's After-sales Service can support you concerning lubricant, tightening torques and tools approved by SAMSON.


1-8 EB 3007 EN

2 Markings on the device

Several nameplates are affixed to the device. The nameplates shown were up to date at the time of publication of this document. The nameplates on the device may differ from

the ones shown. The nameplates are used to identify the separate regulator components (see Chapter 2.1).

2.1 Nameplates

2.2 Location of the nameplates

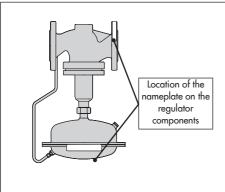


Fig. 2-2: Nameplates of the Type 2422 Valve and the Type 2420 and Type 2425 Diaphragm Actuators

2.3 Material identification number

2.3.1 Type 2422 Valve

See the nameplate (11 for DIN/ANSI version, body material) for the material used. For more details on the nameplate, see Chapter 2.1.

2.3.2 Type 2420 and Type 2425 Actuators

Specifying the material number, you can contact us to find out which material is used. It is specified on the nameplate in the 'MNo.' field (3 for DIN/ANSI). For more details on the nameplate, see Chapter 2.1.

2-2 EB 3007 EN

3 Design and principle of operation

→ See Fig. 3-1 and Fig. 3-2

The differential pressure regulators are designed to maintain the differential pressure between the high-pressure and low-pressure lines to a defined set point.

Type 42-20 · The set point is fixed.

Type 42-25 • The set point can be adjusted as required within the set point range.

The regulators basically consist of the Type 2422 Valve with seat (2) and plug (3) and a closing actuator (Type 2425 or Type 2420) with an operating diaphragm (13). Valve and actuator are delivered separately and must be assembled on site using a coupling nut (11).

The medium flows through the area released between the plug (3) and seat (2) in the direction indicated by the arrow. The position of the valve plug determines the differential pressure prevailing across the plant. The standard Type 2422 Valve is pressurebalanced. The forces acting on the valve plug created by the upstream and downstream pressures are balanced by a balancing bellows (5) or balancing diaphragm ¹⁾ (5.1). Regulators balanced by a bellows or a diaphragm only differ in the pressure balancing principle applied. Valves balanced by a diaphragm have a balancing diaphragm (5.1) instead of the balancing bellows (5). The downstream pressure p₂ acts on the bottom of the diaphragm and the upstream pressure p₁ on the top of the diaphragm. As a result, the forces created by the upstream and

downstream pressures acting on the plug are balanced out.

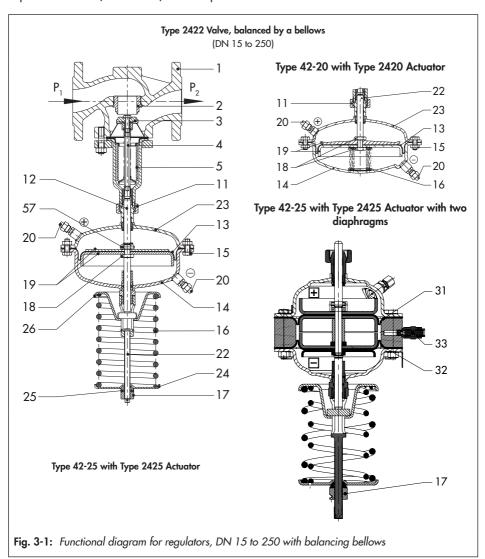
The differential pressure across the plant is transmitted over the high pressure and low pressure lines to the operating diaphragm (13) where it is converted into a positioning force. This force moves the plug according to the force of the set point springs (16).

The set point springs are mounted inside the actuator for a fixed set point (Type 42-20). The set point springs can be adjusted externally for an adjustable set point (Type 42-25).

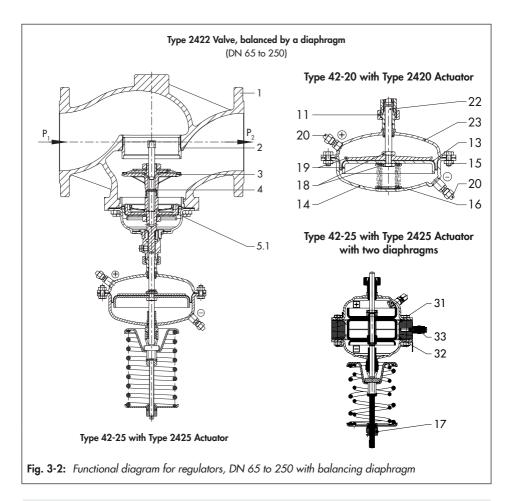
Control lines (20) mounted on site transfer the high pressure and low pressure in all versions.

The actuator with two diaphragms (special version) offers increased safety and reliability of functions. A bore with a mechanical diaphragm rupture indicator (34) is located in the intermediate ring located between the two operating diaphragms (31 and 32). The pressure of response of the diaphragm rupture indication is approximately 1.5 bar/22 psi.

In the event of a diaphragm rupture, the pressure in the space between the two operating diaphragm starts to increase. This causes the pin in the diaphragm rupture indicator to be pushed outwards and a red ring appears, indicating the diaphragm rupture. The intact operating diaphragm


Type 2422 Valve, balanced by a diaphragm, DN 65 to 250 only

Design and principle of operation


takes on the control task of the ruptured diaphragm.

A pressure switch (accessories) can be op-

tionally mounted to the actuator to trigger an alarm.

3-2 EB 3007 EN

Legend for Fig. 3-1 and Fig. 3-2

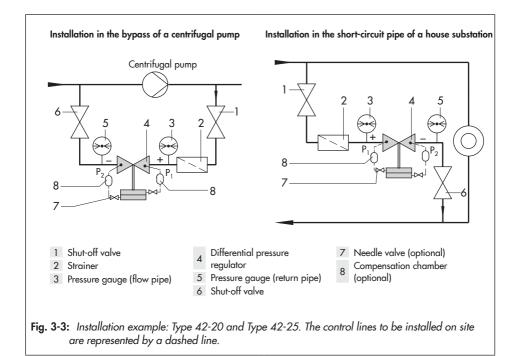
- 1 Valve body
- 2 Seat
- 3 Plug
- 4 Plug stem
- 5 Balancing bellows
- 5.1 Balancing diaphragm (DN 65 to 250)
- 11 Coupling nut

- 12 Diaphragm stem
- 13 Operating diaphragm
- 75 Operating diaphragin
- (valve on top)
- 15 Nuts and bolts
- 16 Set point springs
- 17 Set point adjuster
- 18 Nut

- 19 Diaphragm plate
- 20 Control line
- Bottom diaphragm case 22 Diaphragm stem
 - Top diaphragm case
 - (valve on top)
 - 24 Outer spring plate
 Axial needle bearing
 - with washer

- 26 Inner spring plate
- Operating diaphragm for high pressure
- Operating diaphragm for low pressure
- 33 Diaphragm rupture indicator
- 57 Dowel pin

3.1 Additional fittings


→ See Fig. 3-3

Pressure gauges

Install a pressure gauge (3 and 5) at suitable points to monitor the pressures prevailing in the plant.

Bypass and shut-off valves

SAMSON recommends installing a shut-off valve (1 and 6) both upstream of the strainer and downstream of the regulator and installing a bypass line. The bypass ensures that the plant does not need to be shut down for service and repair work on the regulator.

3-4 EB 3007 EN

Strainers

SAMSON recommends installing a SAMSON strainer (2) upstream of the valve. It prevents solid particles in the process medium from damaging the regulator.

- → Do not use the strainer to permanently filter the process medium.
- Select a strainer (mesh size) suitable for the process medium.

i Note

Any impurities carried along by the process medium may impair the proper functioning of the regulator. We recommend installing a strainer (e.g. SAMSON Type 2 NI) upstream of the pressure reducing valve (> EB 1015).

Insulation

Regulators can be insulated to reduce heat energy transfer.

Refer to the instructions in the 'Installation' chapter.

i Note

The Type 42-20 and Type 42-25 Regulators are not safety valves. If necessary, a suitable overpressure protection must be installed on site in the plant section.

3.2 Technical data

The valve and actuator nameplates provide information on the valve and actuator versions (see the 'Markings on the device' chapter).

i Note

More information is available in Data Sheet ▶ T 3007.

Conformity

The Type 42-20 and Type 42-25 Regulators bear the CE mark of conformity.

Process medium and scope of application

The differential pressure regulators are designed to maintain the differential pressure between the high-pressure and low-pressure lines to a defined set point.

- Suitable for liquids and vapors, max. temperature 350 °C/660 °F ¹⁾
- Suitable for gases, max. temperature 80 °C/175 °F
- Set points from 0.05 to 10 bar
- Nominal size DN 15 to 250
- Pressure ratings from PN 16 to 40

The regulator is closed when relieved of pressure. The valve **opens** when the differential pressure **rises**.

With compensation chamber and extension piece (optional)

Design and principle of operation

Leakage class

The metal-seated regulator has the leakage class I according to IEC 60534-4. The soft-seated regulator has the leakage class IV according to IEC 60534-4.

Temperature range

Depending on how the regulator is configured, it can be used up to temperatures of 350 °C/660 °F (see Table 3-1). The minimum temperature is limited by the accessories used and the actuator's diaphragm material (\triangleright T 3007).

Noise emissions

SAMSON is unable to make general statements about noise emissions. The noise emissions depend on the regulator version, plant facilities, process medium and operating conditions

Dimensions and weights

Table 3-4 to Table 3-6 provide an overview of the dimensions and weights. The lengths and heights in the dimensional drawings are shown on pages 3-13 and 3-14.

Table 3-1: Technical data · All pressures in bar (gauge)

Туре			42	-25		42-20			
Nominal size		DN 15 to 250 DN 15 to 10					to 100		
Pressure rating				PN 16,	25, 40				
	Valve	See pressure-temperature diagram in ▶ T 3000							
Max. permissible tem- perature	hamber: liqui	hamber: steam and liquids up to 220 °C ²⁾ mber: liquids up to 150 °C · Air and gases up to 80 °C							
Set point ranges · Difference across the restriction	ential pressure	0.05 to 0.25 bar · 0.1 to 0.6 bar · 0.2 to 1 bar · 0.5 to 1.5 bar · 1 to 2.5 bar · 2 to 5 bar · 4.5 to 10 bar ³) 0.2 bar, 0.3 bar · 0.4 bar or 0.5 b							
Actuator area A		80 cm ²	160 cm ²	320 cm ²	640 cm ²	160 cm ²	320 cm ²		
Max. permissible operat	ing pressure	4	0 bar for 80	to 320 cm ² ·	40 and 16 b	ar for 640 cn	n ²		
Max. perm. operating p	40 bar		25 bar		_				
Conformity		CE							
Leakage class according IEC 60534-4	≤0.05 % of K _{VS} coefficient								

¹⁾ Max. 350 °C/660 °F with extension piece

Terms for control valve sizing according to IEC 60534, Parts 2-1 and 2-2: $F_L = 0.95$, $X_T = 0.75$

3-6 EB 3007 EN

²⁾ Steam version only with valves balanced by a bellows

³⁾ DN 125 to 250: 4.5 to 10 bar on request

Table 3-2: Materials · Material numbers according to DIN EN

			mbers according	IO DII V L	-1 4				
Type 2	2422 Valve · Balance	d by a bellows							
Nomir	nal size			DN 15 to	250				
Pressu	re rating	PN 16	PN 16, 25		PN 16, 25,	40			
Valve l	body	Cast iron EN-GJL-250	Sph. graphite iron EN-GJS-400-18-LT	Cast stee	Cast stainless ste	el Forged stainless steel 1.4404 1)			
Seat		1.44	401/1.4404 or 1.400)6	1	.4404			
Plug	Up to DN 100 ²⁾		Stainless stee	1.4401/	1.4404 or 1.4006				
riug	DN 125 to 250		1.44	04, with PT	FE soft seal				
Plug st	em			1.430	1				
Metal	bellows		DN 15 to 100: 1	.4571 · DN	N 125 to 250: 1.440)4			
Bottom	section		P265GH		1	.4571			
Body (gasket		Gro	aphite on m	netal core				
Type 2	2422 Valve · Balance	d by a diaphra	gm						
Nomir	nal size			DN 65 to	100				
Pressu	re rating		PN 16		PN 25				
Valve	body	Cas	t iron EN-GJL-250		Sph. graphite iron E	N-GJS-400-18-LT ⁵⁾			
Seat				1.440	8				
Plug				CW617	'N				
Diaphi	ragm case			1.061					
Pressu	re balancing	Diapl	nragm plate 1.4301 ·	EPDM bala	ancing diaphragm, r	nax. 150 °C			
Nomir	nal size			DN 125 to	250				
Pressu	re rating	PN 16	PN 16 and	25	PN 16,	25, 40			
Valve	body	Cast iron EN-GJL-25	1 -1 - 3 -1		Cast steel 1.0619	Cast stainless steel 1.4408			
Seat				CC499l	(³⁾				
Plug			CC499K 3) · With E	PDM or FK	M soft seal, max. 15	0 °C			
Pressu	re balancing	Diaphr	agm plate EN-JS1030	· EPDM be	alancing diaphragm	, max. 150 °C			
Type 2	2420 and Type 2425	Actuators							
Valve l	body	Cast iron, sp	heroidal graphite iror steel 1.0619	ı, cast	Forged steel, cast stainless steel				
Diaphi	ragm cases		1.0332		1.43	301			
Diaphi	ragm		EPDM 4)	with fabric	reinforcement				
Guide	bushing		DU bushing		PT	FE			
Seals				EPDM/PT	FE ⁴⁾				

¹⁾ DN 15, 25, 40 and 50 only

 $^{^{2)}}$ Optionally with soft seal with standard K_{VS} coefficients

³⁾ Special version in 1.4409

⁴⁾ Special version, e.g. for mineral oils: FKM using an actuator with two diaphragms

⁵⁾ Up to max. DN 150

Design and principle of operation

Table 3-3: K_{VS} coefficients, x_{FZ} values and max. permissible differential pressures Δp

Type 2422 Valve · Balanced b	y a be				•								
Nominal size DN	15	20	25	32	40	50	65	80	100	125	150	200	250
Valve travel			10	mm			16 mm				22 mm		
K _{VS}	4.0	6.3	8.0	16	20	32	50	80	125	190	280	420	500
Max. permissible differential pressure Δp			25	bar	•		20	bar	16	bar	12 bar	10	bar
Reduced K _{VS} coefficient	-	-	4.0	6.3	8.0	16	3	2	80	80	125	28	30
Max. permissible differential pressure Δp				25	bar				20	bar	16 bar	12	bar
x _{FZ} value	0.65	0.6	0.	55	0.45	C	0.4		0	.35		0	.3
Type 2422 Valve · Balanced b	y a dio	aphrag	ım										
Nominal size DN	6	5	80		100		125		150		200	25	0
Valve travel			15 m	nm					3	5 mm			
K_{VS}	50)	80)	125	;	250		390	'	650	80	10
Max. permissible differential pressure Δp		12 k	oar		10 b	ar	12 bar			ar 10 bar			
x _{FZ} value	0.	4				0.35			0.3				
Type 2422 Valve · Unbalance	d												
Nominal size DN		15		20)		25		32		40	50)
Valve travel							10 mm	1					
K _{VS}		4.0		4.0 ·	6.3	4.0 ·	6.3 - 8.	0	16		20	33	2
Max. permissible differential pressure $\Delta \textbf{p}$				14 b	ar				ć	bar		4 b	ar
x _{FZ} value	0.65 0.6			5		0	.55		().45	0.	4	
Reduced K _{VS} coefficient	0.1 · 0.4 · 1.0 · 2.5 or 0.001 to 0.04 (micro trim)							-					
Max. permissible differential pressure Δp				25 b	ar						_		
x _{FZ} value				0.6	5						_		

3-8 EB 3007 EN

Table 3-4: Dimensions and weights for Type 42-20 and Type 42-25 · Balanced by a bellows Dimensions in mm · Weights in kg (without process medium)

Nominal siz	ce DN	15	20	25	32	40	50	65	80	100	125	150	200	250	
Length L		130	150	160	180	200	230	290	310	350	400	480	600	730	
Height H1	Up to 220 °C			22	25			30	00	355	460	590	73	30	
neight n i	Up to 350 °C	365					440 495			600	730	87	70		
Height H2	Forged steel	53	_	70	-	92	98				_				
r leight 112	Cast steel		55			72		10	00	120	145	175	235	260	
Height H6							Max	c. + 22	0 mm						
Height H7			+ 55 mm												
Туре 42-20	Differential Press	ure Reç	gulator												
Set points							Type 2	2420 A	ctuato	r					
0.2 bar	Height H ⁵⁾			39	90			465 520							
0.3 bar 0.4 bar	Actuator			ØD = 2 A = 16				ØD = 285 mm, A = 320 cm ²							
0.5 bar	Weight 3) in kg	11.5	12	13	19.5	20	22.5	38	43	57					
Туре 42-25	Type 42-25 Differential Pressure Regulator														
Set points							Type 2	2425 A	ctuato	r					
	Height H 5) 6)	625						70	00	755	990	1120	12	60	
0.05 to 0.25 bar	Actuator	ØD = 285 mm, A = 320 cm ^{2 1)}					\emptyset D = 390 mm, A = 640 cm ²								
	Weight 3) in kg	21	21.5	22.5	29	29.5	32	46	51	65	135	185	425	485	
	Height H 5) 6)			62	25			70	00	755	990	1120	12	60	
0.1 to 0.6 bar	Actuator			ØD = 2 A = 16					\emptyset D = 285 mm, A = 320 cm ^{2 1)}			ØD = 390 mm, A = 640 cm ²			
	Weight 3) in kg	16	16.5	17.5	24	24.5	27	46	51	65	135	185	425	485	
	Height H 5) 6)			62	25			70	00	755	990	1120	12	60	
0.2 to 1 bar	Actuator					= 225 160 c	,				5	ØD = 3° A = 64		,	
	Weight 3) in kg	16	16.5	17.5	24	24.5	27	42	47	61	135	185	425	485	
	Height H 5) 6)			62	25			70	00	755	940	1070	12	10	
0.5 to 1.5 bar	Actuator					= 225 160 c					ØD = 285 mm, A = 320 cm ²				
	Weight 3) in kg	16	16.5	17.5	24	24.5	27	42	47	61	125	175	415	475	

¹⁾ Optionally with 640 cm² actuator

²⁾ Optionally with 320 cm² actuator

³⁾ The weight applies to the version with the material specifications EN-GJL-250. Add +10 % for all other materials.

⁴⁾ DN 125 to 250: 4.5 to 10 bar on request

⁵⁾ Minimum clearance required to remove the actuator:

⁺¹⁰⁰ mm · With extension piece: +140 mm

⁶⁾ Actuators with metal cover H +135 mm

Design and principle of operation

Table 3-4: Dimensions and weights for Type 42-20 and Type 42-25 · Balanced by a bellows Dimensions in mm · Weights in kg (without process medium)

Nominal si	ze DN	15	20	25	32	40	50	65	80	100	125	150	200	250
	Height H 5) 6)		625					700 755			940	1070	12	10
1 to 2.5 bar	Actuator		\emptyset D = 225 mm, A = 160 cm ²											
2.5 501	Weight 3) in kg	16	16.5	17.5	24	24.5	27	42	47	61	125	175	415	475
	Height H 5) 6)	605						68	30	735	940	1070	12	10
2 to 5 bar ⁴⁾	Actuator	\emptyset D = 170 mm, A = 80 cm ²					,				$ \emptyset D = 225 \text{ mm}, $ $ A = 160 \text{ cm}^2 $			
	Weight 3) in kg	16	16.5	17.5	24	24.5	27	42	47	61	125	175	415	475
	Height H 5) 6)			68	35			760 785						
4.5 to 10 bar 4)	Actuator			ØD	= 170	mm, A	v = 80	cm ²			On request			
TO BUI	Weight 3) in kg	16	16.5	17.5	24	24.5	27	42	47	61				

¹⁾ Optionally with 640 cm² actuator

Table 3-5: Dimensions and weights for Type 42-20 and Type 42-25 · Balanced by a diaphragm

Dimensions in mm · Weights in kg (without process medium)

Nominal size DN	65	80	100	125	150	200	250			
Length L	290	310	350	400	480	600	730			
Height H1	2	02	218	285	310	38	30			
Height H2	9	98	118	145	175	260				
Height H6	Max. + 220 mm									
Height H7	+ 55 mm									
Type 42-25 Differential Pressure Regulator										

¹⁾ Optionally with 640 cm² actuator

3-10 EB 3007 EN

²⁾ Optionally with 320 cm² actuator

³¹ The weight applies to the version with the material specifications EN-GJL-250. Add +10 % for all other materials

⁴⁾ DN 125 to 250: 4.5 to 10 bar on request

⁵⁾ Minimum clearance required to remove the actuator: +100 mm · With extension piece: +140 mm

⁶⁾ Actuators with metal cover H +135 mm

²⁾ Optionally with 320 cm² actuator

³⁾ Actuators with metal cover H +135 mm

⁴⁾ Minimum clearance required to remove the actuator: +100 mm

200

250

Table 3-5: Dimensions and weights for Type 42-20 and Type 42-25 · Balanced by a diaphragm

Dimensions in mm · Weights in kg (without process medium)

140mmar 3	Nominal Size DIN		00	100	123	150	200	230					
Set points			Type 2420 Actuator										
0.2 bar	Height H 4)	3:	55	375									
0.3 bar 0.4 bar	Actuator	ØD = 28	85 mm · A =	320 cm ²	_								
0.4 bar	Weight in kg	38	43	51									
Type 42-20	O Differential Press	ure Regulate	or										
Set points		Type 2425 Actuator											
0.05	Height H 3) 4)	7:	20	740	815	840	9	10					
0.05 to 0.25 bar	Actuator	ØD = 390 mm, A = 640 cm ²											
0.25 bui	Weight in kg	42	47	55	75	95	250	270					
0.1.	Height H 3) 4)	5'	90	610	815	840 910							
0.1 to 0.6 bar	Actuator	ØD = 28	35 mm, A = 3	320 cm ^{2 1)}	Ø	D = 390 mm	n, A = 640 cr	n ²					
0.0 bai	Weight in kg	42	47	55	75	95	250	270					
00.	Height H 3) 4)	5'	90	610	765	790	86	50					
0.2 to 1 bar	Actuator	ØD = 22	25 mm, A = 1	60 cm ^{2 2)}	$\emptyset D = 285 \text{ mm}, A = 320 \text{ cm}^{21}$								
ı baı	Weight in kg	42	47	55	75	95	250	270					
0.5.	Height H 3) 4)	5'	90	610	765 790 860								
0.5 to 1.5 bar	Actuator	ØD = 22	25 mm, A = 1	60 cm ^{2 2)}	ØD = 285 mm, A = 320 cm ^{2 1)}								
1.5 501	Weight in kg	42	47	55	75	95	250	270					
1.	Height H 3) 4)	5'	90	610	765	790	80	50					
1 to 2.5 bar	Actuator			ØD = 22	5 mm, A = 1	60 cm ^{2 2)}							
2.0 001	Weight in kg	42	47	55	75	95	250	270					
2.	Height H 3) 4)	5'	90	610	765	790	86	50					
2 to 5 bar	Actuator			$\emptyset D = 2$	25 mm, A =	160 cm ²							
O DGI	Weight in kg	42	47	55	75	95	250	270					

¹⁾ Optionally with 640 cm² actuator

Nominal size DN

²⁾ Optionally with 320 cm² actuator

³⁾ Actuators with metal cover H +135 mm

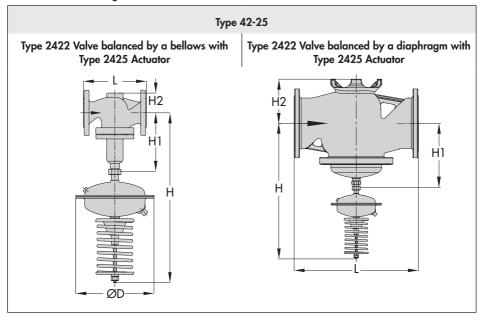
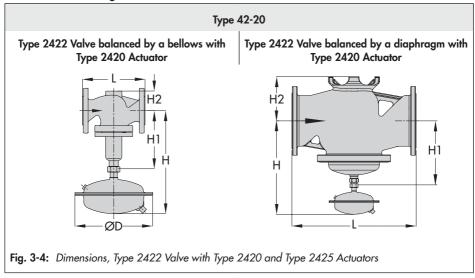
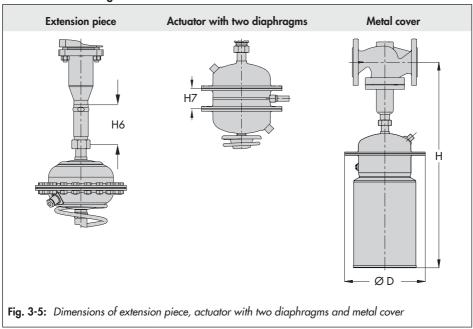

⁴⁾ Minimum clearance required to remove the actuator: +100 mm

Table 3-6: Weights of Type 2420 and Type 2425 Actuators · Weights in kg (without process medium)

Actuator area in cm ²	640	320	160 · 80 · 40
Weight 1) in kg	45	23	12


¹⁾ Weight of Type 2425 Actuator with two diaphragms on request

Dimensional drawings


3-12 EB 3007 EN

Dimensional drawings

Design and principle of operation

Dimensional drawings

3-14 EB 3007 EN

4 Shipment and on-site transport

The work described in this chapter is only to be performed by personnel appropriately qualified to carry out such tasks.

4.1 Accepting the delivered goods

After receiving the shipment, proceed as follows:

- Check the scope of delivery. Check that the specifications on the valve and actuator nameplate match the specifications in the delivery note. See the 'Markings on the device' chapter for nameplate details.
- Check the shipment for transportation damage. Report any damage to SAM-SON and the forwarding agent (refer to delivery note).
- Determine the weight and dimensions of the units to be lifted and transported in order to select the appropriate lifting equipment and lifting accessories. Refer to the transport documents and the 'Design and principle of operation' chapter.

4.2 Removing the packaging from the regulator

The components (valve, actuator and, if applicable, accessories) of the regulator are delivered separately.

Proceed as follows to lift and install the valve:

- → Do not open or remove the packaging until immediately before lifting to install the regulator into the pipeline.
- → Leave the regulator components in its transport container or on the pallet to transport it on site.
- → Do not remove the protective caps from the inlet and outlet until immediately before installing the valve into the pipeline. They prevent foreign particles from entering the valve.
- → Dispose and recycle the packaging in accordance with the local regulations.

4.3 Transporting and lifting the regulator

A DANGER

Danger due to suspended loads falling.

- → Stay clear of suspended or moving loads.
- → Close off and secure the transport paths.

A WARNING

Risk of injury due to incorrect lifting without the use of lifting equipment.

Lifting the regulator without the use of lifting equipment may lead to injuries (back injury in particular) depending on the weight of the regulator and/or actuator.

- Observe the occupational health and safety regulations valid in the country of use.
- → Observe the guideline weight for manual handling: 15 to max. 55 kg per person taking into account age, gender and physical fitness.
- → When the actuator is filled with medium, take the weight of the medium also into account.
- Refer to the 'Design and principle of operation' chapter for the weights of the regulator and actuator.

A WARNING

Risk of personal injury due to the regulator tipping.

- → Observe the regulator's center of gravity.
- Secure the regulator against tipping over or turning.

A WARNING

Risk of lifting equipment tipping over and risk of damage to lifting accessories due to exceeding the rated lifting capacity.

- Only use approved lifting equipment and accessories whose minimum lifting capacity is higher than the weight of the valve (including actuator and packaging, if applicable).
- → Refer to the 'Design and principle of operation' chapter for the weights.

-☆- Tip

Our after-sales service can provide more detailed transport and lifting instructions on request.

4.3.1 Transporting the regulator

The regulator can be transported using lifting equipment (e.g. crane or forklift).

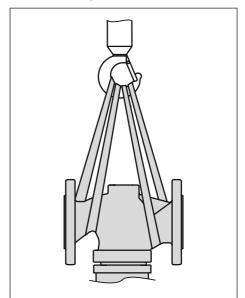
- → Leave the regulator in its transport container or on the pallet to transport it.
- → Observe the transport instructions.

4-2 EB 3007 EN

Transport instructions

- Protect the regulator against external influences (e.g. impact).
- Do not damage the corrosion protection (paint, surface coatings). Repair any damage immediately.
- Protect the regulator against moisture and dirt.
- Protect the piping and any mounted valve accessories against damage.
- → The permissible ambient temperature of standard regulators is -20 to +80 °C.

4.3.2 Lifting the regulator


To install a large regulator into the pipeline, use lifting equipment (e.g. crane or forklift) to lift it

Lifting instructions

- → Use a hook with safety latch to secure the slings from slipping off the hook during lifting and transporting (see Fig. 4-1).
- → Secure slings against slipping.
- → Make sure the slings can be removed after installation.
- Prevent the regulator from tilting or tipping.
- Do not leave loads suspended when interrupting work for longer periods of time.
- → Make sure that the axis of the pipeline is always horizontal during lifting and the axis of the plug stem is always vertical.

Lifting

- Attach one sling to the flange of the body and to the rigging equipment (e.g. hook) of the crane or forklift (see Fig. 4-1).
- Carefully lift the regulator. Check whether the lifting equipment and accessories can bear the weight.
- 3. Move the regulator at an even pace to the site of installation.
- 4. Install the regulator into the pipeline (see the 'Installation' chapter).
- After installation in the pipeline, check whether the regulator flanges are bolted tight.
- 6. Remove slings.

Fig. 4-1: Schematic drawing of lifting points on the regulator

4.4 Storing the regulator

NOTICE

Risk of regulator damage due to improper storage.

- → Observe the storage instructions.
- → Avoid long storage times.
- Contact SAMSON in case of different storage conditions or longer storage times.

i Note

We recommend regularly checking the regulator and the prevailing storage conditions during long storage periods.

Storage instructions

- Protect the regulator against external influences (e.g. impact).
- → Secure the regulator in the stored position against slipping or tipping over.
- → Do not damage the corrosion protection (paint, surface coatings). Repair any damage immediately.
- → Protect the regulator against moisture and dirt. Store it at a relative humidity of less than 75 %. In damp spaces, prevent condensation. If necessary, use a drying agent or heating.
- → Make sure that the ambient air is free of acids or other corrosive media.
- → The permissible storage temperature of standard regulators is -20 to +65 °C.
- → Do not place any objects on the regulator

Special storage instructions for elastomers

Elastomer, e.g. operating diaphragm

- To keep elastomers in shape and to prevent cracking, do not bend them or hang them up.
- → Store elastomers away from lubricants, chemicals, solutions and fuels.
- We recommend a storage temperature of 1.5 °C for elastomers

∵\\rip

SAMSON's After-sales Service can provide more detailed storage instructions on request.

4-4 EB 3007 EN

5 Installation

The work described in this chapter is to be performed only by personnel appropriately qualified to carry out such tasks.

5.1 Installation conditions

Work position

The work position for the regulator is the front view onto all operating controls on the regulator (including any additional fittings) seen from the position of operating personnel.

Plant operators must ensure that, after installation of the device, the operating personnel can perform all necessary work safely and easily access the device from the work position.

Pipeline routing

The inlet and outlet lengths vary depending on several variables and process conditions and are intended as recommendations. Contact SAMSON if the lengths are significantly shorter than the recommended lengths.

To ensure that the regulator functions properly, proceed as follows:

- → Observe the inlet and outlet lengths (see Table 5-1). Contact SAMSON if the regulator conditions or state of the medium process deviate.
- → Install the regulator free of stress and

- with the least amount of vibrations as possible. Read information under "Mounting position" and "Support or suspension" in this chapter.
- → For media with a tendency to condensate, an automatic drainage must be installed. Install the pipeline with a slight downward slope on both sides of the regulator to prevent condensate from collecting in the valve.
- Install the regulator allowing sufficient space to remove the actuator and valve or to perform service work on them.

Mounting position

To ensure that the regulator functions properly, proceed as follows:

- → Standard mounting position: install the actuator housing suspended downward in horizontal pipelines (see Fig. 5-1).
- → Make sure the direction of flow matches the direction indicated by the arrow on the body.
- → Contact SAMSON if the mounting position is not as specified above.

Damage due to freezing.

Protect the regulator from icing up when controlling media that can freeze. Unless the regulator is installed in locations where no frost occurs, remove the regulator from the pipeline when the plant is shut down.

Standard mounting position, suspended

Balanced by a bellows or diaphragm

All versions

- -Air and gases up to 80 °C
- -Liquids up to 150 °C

Balanced by a bellows

- All media above 80 °C
- Steam applications

Alternative mounting position, actuator on top

Balanced by a diaphragm · DN 65 to 80

- -Air and gases up to 80 °C
- -Liquids up to 120 °C

Balanced by a bellows · DN 15 to 80

All versions plus:

- -Air and gases up to 80 °C
- -Liquids up to 120 °C

Alternative mounting position in riser pipes · Balanced by a bellows

Version with fixed plug guide plus:

- -Air and gases up to 80 °C
- − Liquids up to 120 °C

Fig. 5-1: Mounting position

Depending on the regulator version and mounting position, the valve, actuator and pipeline must be supported or suspended.

NOTICE

Risk of regulator damage due to incorrect support.

- Do not attach supports to the valve, to moving parts on the actuator or to the control lines.
- Contact SAMSON if the mounting position differs from the standard mounting position.

Control line

Route the control lines on site preferably using a 8x1 mm (stainless) steel pipe. The pressure tapping point must at least three times the valve size (DN) away from any pipe fittings (e.g. restrictions, bends or branches), that may cause turbulence in the flow. How the lines are routed generally depends on the installation site.

- → Preferably connect the control line to the side of the main pipe (see Fig. 5-3).
- → Do not change the pipe diameter of the main pipeline with an eccentric reducer.

Support or suspension

The plant engineering company is responsible for selecting and implementing a suitable support or suspension of the installed regulator and the pipeline.

-ÿ- Tip

Control line kits, needle valves, condensation chambers and compression-type screw fittings can be supplied as required. These accessories are listed in > T 3095.

5-2 EB 3007 EN

Needle valve

To additionally dampen the regulator or to shut off the control lines, we recommend also installing a needle valve in the control line in addition to the standard SAMSON screw joint with restriction. The standard SAMSON screw joint with restriction is located in the compression-type fitting at the (+) connection of the diaphragm actuator (see Fig. 5-2).

Compensation chamber

A compensation chamber (8) is required for liquids above 150 °C as well as for steam (see Fig. 5-4). Install the compensation chamber at the highest point of the pipeline. The mounting position of the compensation chamber is indicated by an adhesive label on the chamber itself as well as by an arrow and the word "top" stamped on the top of the chamber.

This mounting position must be adhered to; otherwise the safe functioning of the regulator cannot be guaranteed (see Fig. 5-2).

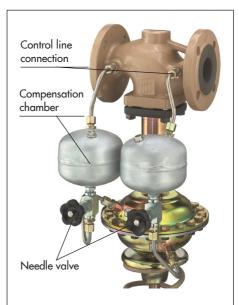
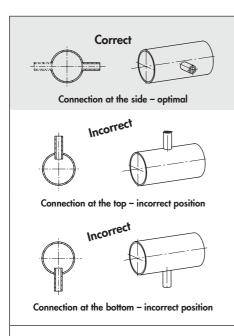
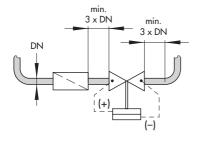




Fig. 5-2: Regulator for medium temperatures above 150 °C or for steam up to 220 °C

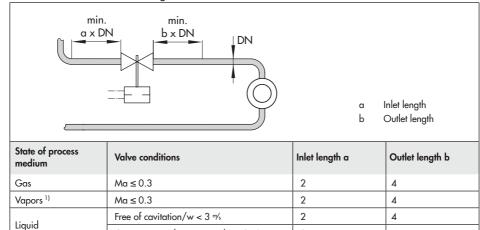
DN = Valve size

Control line connection, depending on how the pipeline is routed and depending on the components

Fig. 5-3: Control line connections

5.2 Preparation for installation

Valve and actuator can be assembled before or after the valve has been installed in the pipeline. We recommend first installing the valve without the actuator into the pipeline. Before installation, make sure the following conditions are met:


- The valve is clean.
- The valve, actuator and all piping are not damaged.
- Install a strainer upstream of the regulator.
- The valve data on the nameplate (type designation, valve size, material, pressure rating and temperature range) match the plant conditions (size and pressure rating of the pipeline, medium temperature etc.). See the 'Markings on the device' chapter for nameplate details.
- The requested or required additional fittings (see the 'Design and principle of operation' chapter) have been installed or prepared as necessary before installing the valve.

Proceed as follows:

- Lay out the necessary material and tools to have them ready during installation work.
- Check any mounted pressure gauges to make sure they function properly.

5-4 EB 3007 EN

Table 5-1: Inlet and outlet lengths

2

4

Cavitation producing noise/w ≤ 3 m/s

¹⁾ No wet steam

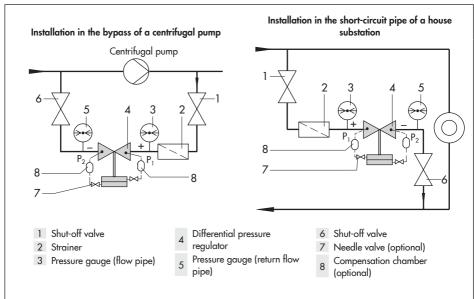


Fig. 5-4: Installation example: Type 42-20 and Type 42-25. The control lines to be installed on site are represented by a dashed line.

EB 3007 EN 5-5

5.3 Installation

The components (valve, actuator and, if applicable, accessories) of the SAMSON regulator are delivered separately. Upon delivery, the separate components must be assembled together. The activities listed below are necessary for installation and before start-up of the regulator.

A DANGER

Danger due to suspended loads falling.

- → Stay clear of suspended or moving loads.
- → Close off and secure the transport paths.

A WARNING

Risk of injury due to incorrect lifting without the use of lifting equipment.

Lifting the regulator without the use of lifting equipment may lead to injuries (back injury in particular) depending on the weight of the regulator and/or actuator.

- → Observe the guideline weight for manual handling: 15 to max. 55 kg per person taking into account age, gender and physical fitness.
- → When the actuator is filled with medium, take the weight of the medium also into account.
- Refer to the 'Design and principle of operation' chapter for the weights of the regulator and actuator.
- → Observe the occupational health and safety regulations valid in the country of use.

A WARNING

Risk of lifting equipment tipping over and risk of damage to lifting accessories due to exceeding the rated lifting capacity.

- Only use approved lifting equipment and accessories whose minimum lifting capacity is higher than the weight of the valve (including actuator and packaging, if applicable).
- → Refer to the 'Design and principle of operation' chapter for the weights.

A WARNING

Risk of personal injury due to the regulator tipping.

- → Observe the regulator's center of gravity.
- Secure the regulator against tipping over or turning.

NOTICE

Risk of regulator damage due to the use of unsuitable tools.

→ Only use tools approved by SAMSON (see 'Tools' in the Appendix).

NOTICE

Risk of regulator damage due to the use of unsuitable lubricants.

Only use lubricants approved by SAMSON (see 'Lubricants' in the Appendix).

NOTICE

Risk of regulator damage due to excessively high or low tightening torques.

Observe the specified torques when tightening regulator components. Excessive tightening torques lead to parts wearing out more quickly. Parts that are too loose may cause leakage.

→ Observe the specified tightening torques (see 'Tightening torques' in the Appendix).

5.3.1 Installing the regulator

The regulator can be installed in a bypass pipe or a short-circuit pipe (see installation example in Fig. 5-4).

- Close the shut-off valves (1, 6) upstream and downstream of the regulator while the regulator is being installed.
- Remove the protective caps from the valve ports before installing the valve.
- Lift the valve using suitable lifting equipment to the site of installation. Observe
 the flow direction through the valve. The
 arrow on the valve indicates the direction
 of flow.
- Make sure that the correct flange gaskets are used.
- 5. Bolt the pipe to the valve free of stress.
- Mount the actuator.
- Fasten the actuator on the valve by tightening the coupling nut (11), while observing the alignment of the control line connections. Observe the specified tight-

- ening torques (see 'Tightening torques' in the Appendix).
- Mount the control lines (to be installed on site) and any needle valves and open them
- Mount the control lines (to be installed on site) on the actuator. Observe the specified tightening torques (see 'Tightening torques' in the Appendix).
- For steam or liquids above 150 °C install the compensation chamber and fill it with the process medium. Observe the specified tightening torques (see 'Tightening torques' in the Appendix).

EB 3007 EN 5-7

5.4 Testing the regulator

A DANGER

Risk of bursting due to incorrect opening of pressurized equipment or components.

Regulators and pipelines are pressure equipment that may burst when handled incorrectly. Flying projectile fragments or the release of process medium under pressure can cause serious injury or even death.

Before working on the regulator:

- → Depressurize all plant sections concerned and the regulator.
- → Disconnect the control line.
- → Drain the process medium from all the plant sections concerned as well as the valve.

A WARNING

Risk of personal injury due to pressurized components and process medium being discharged.

Incorrect opening of pressure equipment or mounting parts may lead to the process medium escaping to the atmosphere.

- → Do not loosen the control line while the valve is pressurized.
- → Do not start up the regulator until all parts have been mounted.

A WARNING

Risk of hearing loss or deafness due to loud noise.

Noise emission (e.g. cavitation) may occur during operation caused by the process medium and the operating conditions.

→ Wear hearing protection when working near the valve. Follow the instructions given by the plant operator.

A WARNING

Risk of burn injuries due to hot or very cold components and pipelines.

Depending on the process medium, valve components and pipelines may get very hot or cold and cause burn injuries.

Wear protective clothing and safety gloves.

The regulator components are delivered by SAMSON ready for use. To test the regulator functioning before start-up or putting back the regulator into operation, perform the following tests:

5.4.1 Leakage

The plant operator is responsible for performing the leak test and selecting the test method. The leak test must comply with the requirements of the national and international standards that apply at the site of installation.

∹**∑**- Tip

SAMSON's After-sales Service can support you to plan and perform a leak test for your plant.

- → All required control lines are connected to the actuator and are not shut off.
- Install the regulator into the pipeline. See the "Installation" chapter.
- 2. Apply the required test pressure.
- Check the regulator for leakage to the atmosphere.
- Depressurize the pipeline section and regulator.
- Rework any parts that leak and repeat the leak test

5.4.2 Pressure test

i Note

The plant operator is responsible for performing the pressure test. SAMSON's After-sales Service can support you to plan and perform a pressure test for your plant.

NOTICE

Risk of valve damage due to a sudden pressure increase.

Slowly open the shut-off valves.

Pressure test with mounted diaphragm actuator

During the pressure test, make sure the following conditions are met:

- → All required control lines are connected to the actuator and are not shut off.
- → Do not allow the pressure to exceed the 1.5 times the pressure rating of the valve body.
- → Do not apply a pressure higher than the maximum specified pressure rating or maximum operating pressure to the actuator (see Table 3-1 in the 'Design and principle of operation' chapter).
- Make sure that the pressure rises simultaneously upstream and downstream of the regulator to avoid damaging the balancing bellows or the balancing diaphragm.

If the **test pressure** of the valve is **higher** than the specified maximum permissible operating pressure of the diaphragm actuator:

- → Depressurize the plant and remove the control line. Close any control line connection in the plant by closing the installed shut-off valve or inserting a blanking plug.
- → Seal the body connections with blanking plugs.

The diaphragm actuator remains mounted on the valve and seals off the valve.

EB 3007 EN 5-9

Pressure test without mounted diaphragm actuator

A WARNING

Risk of personal injury due to pressurized components and process medium being discharaed.

Incorrect opening of pressure equipment or mounting parts may lead to the process medium escaping to the atmosphere.

- → Do not loosen the control line while the valve is pressurized.
- → Do not start up the regulator until all parts have been mounted.

If the valve is not sealed off, the test medium escapes at the connection where the actuator is connected to the valve. It is not possible to perform a pressure test on the valve in this case (see Fig. 5-5).

→ Seal off the valve using a coupling nut (0250-1037) with seal (0340-1962).

Fig. 5-5: Medium escaping when an actuator is not mounted on the valve

5.4.3 Filling the plant

Open the shut-off valves slowly over a time period of several minutes preferably starting from the upstream pressure side to fill the plant (all consumers and control lines are open).

Make sure that the pressure rises simultaneously upstream and downstream of the regulator to avoid damaging the balancing bellows or the balancing diaphragm.

NOTICE

Risk of regulator damage due to steam hammering.

Steam hammering is possible when the process medium is a liquid with a boiling point at atmospheric pressure.

→ Open the shut-off valves slowly preferably starting from the downstream side to fill the plant over a time period of several minutes.

5-10 EB 3007 EN

5.4.4 Cleaning the pipeline

We recommend additionally flushing the pipeline with installed regulator over a time period of several minutes before start-up.

- All required control lines are connected and not shut off.
- → Before flushing the plant with the process medium, read the information under 'Starting up the plant' in the 'Start-up' chapter.
- → A lower set point is adjusted at the controller and all consumers are open to guarantee a high flow rate.
- → Observe the mesh size of the upstream strainer for the maximum particle size. Use strainers to suit the process medium.
- Check the strainer for dirt each time the pipeline is flushed and clean it, if necessary.

If the regulator malfunctions due to clogging after flushing the pipeline, proceed as described in the 'Troubleshooting' chapter.

5.5 Insulation

To insulate cold systems, we recommend first filling the plant and carefully rinsing it. The regulator must not yet be insulated at this stage.

- Start up the plant and adjust the set point (see the 'Start-up' chapter).
- Shut down the plant again and let it heat up until the condensation water has dried off.
- 3. Insulate the regulator and pipes conveying the process medium using insulation material with a water vapor barrier. Use a stable sleeve to protect the external set point springs against touching or friction and include it in the insulation. If a control line is to be routed through the insulation, special care must be taken with the sealing since slight changes in shape may occur. The insulation thickness depends on the medium temperature and the ambient conditions. 50 mm is a typical thickness

NOTICE

Risk of regulator damage due to incorrect insulation.

- → The actuator must be insulated for medium temperatures below 0 °C.
- → The regulator must only be insulated up to the bottom section with balancing bellows or up to the connection of the actuator for medium temperatures above 80 °C.

EB 3007 EN 5-11

Installation

6 Start-up

The work described in this chapter is only to be performed by personnel appropriately qualified to carry out such tasks.

A WARNING

Risk of personal injury due to pressurized components and process medium being discharged.

Incorrect opening of pressure equipment or mounting parts may lead to the process medium escaping to the atmosphere.

- Do not loosen the control line while the valve is pressurized.
- Do not start up the regulator until all parts have been mounted.

A WARNING

Risk of burn injuries due to hot or cold components and pipeline.

Regulator components and the pipeline may become very hot or cold. Risk of burn injuries.

- Allow components and pipelines to cool down or warm up to the ambient temperature.
- Wear protective clothing and safety gloves.

A WARNING

Risk of hearing loss or deafness due to loud noise.

Noise emission (e.g. cavitation) may occur during operation caused by the process medium and the operating conditions. → Wear hearing protection when working near the valve. Follow the instructions given by the plant operator.

Before start-up or putting the device back into service, make sure the following conditions are met:

- The regulator is properly installed into the pipeline (see the 'Installation' chapter).
- The leak and function tests have been completed successfully (see the 'Testing the regulator' chapter).
- The prevailing conditions in the plant section concerned meet the regulator sizing requirements (see information under 'Intended use' in the 'Safety instructions and measures' chapter).

6.1 Start-up and putting the regulator back into operation

- 1. Depending on the field of application, allow the regulator to cool down or warm up to reach ambient temperature before start up.
- 2. All consumer valves are open.
- Open the shut-off valves slowly over a time period of several minutes. Slowly opening these valves prevents a sudden surge in pressure which can damage the regulator parts.
- 4. Check the regulator to ensure it functions properly (see information under 'Adjusting the differential pressure set point' in the 'Operation' chapter).

EB 3007 EN 6-1

Before starting up the plant, make sure the following conditions are met:

 The control lines are open (needle valve) and correctly connected.

6.2 Starting up the plant

A WARNING

Risk of personal injury due to process medium escapina.

Depending on the conditions in the plant in operation, it may be necessary to install compensation chambers to protect the regulator

- → Proceed as described in 'Regulation of liquids' and 'Regulation of steam' for liquids or steam above 150 °C before starting up the plant.
- The plant (e.g. consumer valve) must be open while the plant is being filled.
- The control lines are open (needle valve) and correctly connected.

3. For media that do not reach their boiling point:

Open the shut-off valves **slowly** over a time period of several minutes starting from the upstream pressure side. Fill the plant with the medium.

For media that reach their boiling point: Open the shut-off valves slowly starting from the downstream side to avoid steam hammerina.

4. Make sure that the pressure rises simultaneously upstream and downstream of the

regulator to avoid damaging the balancing bellows or diaphragm.

Regulation of liquids

- → For liquid medium temperatures above 150 °C, first fill the compensation chamber with the process medium. Proceed as follows:
- Unscrew filler plug from the compensation chamber
- Use the included plastic funnel or a jug to pour in the process medium until it reaches the filling opening.
- 3. Screw the filler plug back in and tighten it.

Regulation of steam

- → Warm up the plant very slowly. During this procedure, drain off any condensate and vent the plant.
- → First fill the compensation chamber with water. Proceed as follows:
- Unscrew filler plug from the compensation chamber.
- Use the included plastic funnel or a jug to pour in water until it reaches the filling opening.
- 3. Screw the filler plug back in and tighten it.
- All pipes conveying the process medium must be completely drained and dry.
- Air and condensate must be allowed to escape from the plant.
- Allow time for the pipes and valves to heat up.

7 Operation

Immediately after completing start-up or placing the regulator back into service (see the 'Start-up' chapter), the regulator is ready for use.

A WARNING

Risk of burn injuries due to hot or cold components and pipeline.

Regulator components and the pipeline may become very hot or cold. Risk of burn injuries.

- Allow components and pipelines to cool down or warm up to the ambient temperature.
- Wear protective clothing and safety gloves.

A WARNING

Risk of personal injury due to pressurized components and process medium being discharged.

Incorrect opening of pressure equipment or mounting parts may lead to the process medium escaping to the atmosphere.

- → Do not loosen the control line while the valve is pressurized.
- → Do not start up the regulator until all parts have been mounted.

A WARNING

Risk of hearing loss or deafness due to loud noise.

Noise emission (e.g. cavitation) may occur during operation caused by the process medium and the operating conditions.

→ Wear hearing protection when working near the valve. Follow the instructions given by the plant operator.

7.1 Adjusting the differential pressure set point

→ The control and shut-off valves as well as all consumers or a bypass valve (if installed) must be open.

i Note

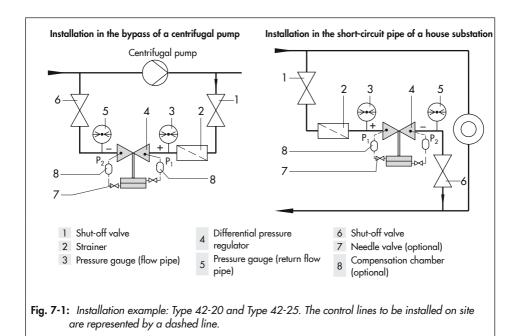
We recommend adjusting the regulator at an operating point at which the consumer valve is open by approximately 90 %. This results in the highest controlled differential pressure.

Type 42-20

The fixed set point is ready adjusted at the set point springs in the actuator. Depending on the set point springs, a differential pressure of 0.2 to 0.5 bar (in 0.1 bar increments) can be selected at the ordering stage.

Type 42-25

Adjust the required set point by tensioning the set point springs at the set point adjuster (17).


EB 3007 EN 7-1

Operation

For smaller differential pressure set points, we recommend using a differential pressure pressure gauge instead of the pressure gauges (3 and 5) to check the pressure. See Fig. 7-1.

- Turn the set point adjuster (17) clockwise (*\mathcal{O}*) to increase the pressure set point.
- Turn the set point adjuster (17) counterclockwise (O) to reduce the pressure set point.

Change the plant throughput (e.g. by opening and closing the consumer valve) to check the adjusted differential pressure at the regulator. Correct it, if necessary.

8 Malfunctions

8.1 Troubleshooting

Malfunction	Possible reasons	Recommended action	
	Insufficient pressure pulses on the operating diaphragm	→ Clean the control line, needle valve and screw fittings.	
	Strainer blocked	→ Clean the strainer.	
	Foreign particles blocking the plug	 → Remove foreign particles. → Replace damaged parts. → Contact SAMSON's After-sales Service. 	
Differential pressure exceeds adjusted set point.	Regulator or K _{VS} /C _V coefficient too small	 → Check the sizing. → Change K_{VS}/C_V coefficient, if necessary or install a different sized regulator. → Contact SAMSON's After-sales Service. 	
	Safety device, e.g. pressure limiter, has been triggered	→ Check plant. If necessary, unlock safety device.	
	Incorrect set point range selected	→ Check set point range→ Contact SAMSON's After-sales Service.	
	Pressure tapped at the wrong place.	→ Reconnect control lines at a different place. Do not tap pressure at pipe bends or necks.	
	Defective operating diaphragm	→ Replace damaged diaphragm.	
	Regulator installed against the flow	→ Install the regulator so that the direction of flow matches the direction indicated by the arrow on the body.	
	Regulator or K_{VS}/C_V coefficient too large	 → Check the sizing. → Change K_{VS}/C_V coefficient, if necessary or install a different sized regulator. → Contact SAMSON's After-sales Service. 	
Differential pressure set point not reached	Seat and plug are worn or leak.	 → Replace the damaged seat and plug. → Contact SAMSON's After-sales Service. 	
	Incorrect set point range selected	→ Check set point range → Contact SAMSON's After-sales Service.	
	Foreign particles blocking the plug	 → Remove foreign particles. → Replace damaged parts. → Contact SAMSON's After-sales Service. 	
	Insufficient pressure pulses on the operating diaphragm	→ Clean the control line, needle valve and screw fittings.	

EB 3007 EN 8-1

Malfunctions

Malfunction	Possible reasons	Recommended action	
Differential pressure	Regulator or K _{VS} /C _V coefficient too large	 → Check the sizing. → Change K_{VS}/C_V coefficient, if necessary or install a different sized regulator. → Contact SAMSON's After-sales Service. 	
noctodies.	The restriction in the control line for pressure tapping is too large or missing.	→ Install a restriction or needle valve. → Install a smaller restriction.	
Slow control response	Restriction in the screw joint of the actuator dirty or too small	 → Do not close the screw joint with restriction completely. → Clean screw joint or install larger screw joint. 	
	Dirt in the control line	→ Clean the control line.	
Jerky control Increased friction, e.g. due to foreign particles between seat and plug		 → Remove foreign particles. → Replace damaged parts. → Contact SAMSON's After-sales Service. 	
Loud noises	High flow velocity, cavitation	→ Check the sizing. → Install larger regulator, if necessary.	

i Note

Contact SAMSON's After-sales Service for malfunctions not listed in the table.

The malfunctions listed in Chapter 8.1 are caused by mechanical faults and incorrect regulator sizing. In the simplest case, the functioning can be restored following the recommended action. Special tools may be required to rectify the fault.

Exceptional operating and installation conditions may lead to changed situations that may affect the control response and lead to malfunctions. For troubleshooting, the conditions, such as installation, process medium, temperature and pressure conditions, must be taken into account.

-∯- Tip

SAMSON's After-sales Service can support you in drawing up an inspection and test plan for your plant.

8.2 Emergency action

Plant operators are responsible for emergency action to be taken in the plant.

We recommend removing the regulator from the pipeline before repairing it.

In the event of a regulator malfunction:

- Close the shut-off valves upstream and downstream of the regulator to stop the process medium from flowing through the regulator.
- 2. Perform troubleshooting (see Chapter 8.1).
- Rectify those malfunctions that can be remedied based on the instructions provided here. Contact SAMSON's After-sales Service in all other cases.

Putting the regulator back into operation after a malfunction

See the 'Start-up' chapter.

EB 3007 EN 8-3

9 Servicing

The regulator does not require any maintenance. Nevertheless, it is subject to natural wear, particularly at the seat, plug and operating diaphragm. Depending on the operating conditions, check the regulator at regular intervals to avoid possible malfunctions. Plant operators are responsible for drawing up an inspection and test plan. Details on faults and how to remedy them can be found in the 'Malfunctions' chapter.

The work described in this chapter is only to be performed by personnel appropriately qualified to carry out such tasks.

We recommend removing the regulator from the pipeline before performing any maintenance or service work.

▲ DANGER

Danger due to suspended loads falling.

- → Stay clear of suspended or moving loads.
- → Close off and secure the transport paths.

A WARNING

Risk of personal injury due to the regulator tipping.

- → Observe the regulator's center of gravity.
- → Secure the regulator against tipping over or turning.

A WARNING

Risk of burn injuries due to hot or cold components and pipeline.

Regulator components and the pipeline may become very hot or cold. Risk of burn injuries.

- Allow components and pipelines to cool down or warm up to the ambient temperature.
- Wear protective clothing and safety gloves.

A WARNING

Risk of personal injury due to residual process medium in the regulator.

While working on the regulator, residual process medium can escape and, depending on its properties, may lead to personal injury, e.g. (chemical) burns.

Wear protective clothing, safety gloves and eye protection.

A WARNING

Risk of lifting equipment tipping over and risk of damage to lifting accessories due to exceeding the rated lifting capacity.

- → Only use approved lifting equipment and accessories whose minimum lifting capacity is higher than the weight of the valve (including actuator and packaging, if applicable).
- → Refer to the 'Design and principle of operation' chapter for the weights.

EB 3007 EN 9-1

A WARNING

Risk of injury due to incorrect lifting without the use of lifting equipment.

Lifting the regulator without the use of lifting equipment may lead to injuries (back injury in particular) depending on the weight of the regulator and/or actuator.

- → Observe the occupational health and safety regulations valid in the country of use.
- → Observe the guideline weight for manual handling: 15 to max. 55 kg per person taking into account age, gender and physical fitness.
- → When the actuator is filled with medium, take the weight of the medium also into account.
- → Refer to the 'Design and principle of operation' chapter for the weights of the regulator and actuator.

• NOTICE

Risk of regulator damage due to excessively high or low tightening torques.

Observe the specified torques when tightening regulator components. Excessive tightening torques lead to parts wearing out more quickly. Parts that are too loose may cause leakage.

Observe the specified tightening torques (see 'Tightening torques' in the Appendix).

NOTICE

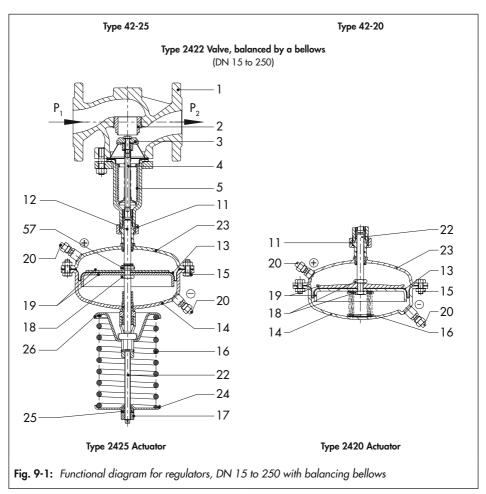
Risk of regulator damage due to the use of unsuitable lubricants.

 Only use lubricants approved by SAMSON (see 'Lubricants' in the Appendix).

NOTICE

Risk of regulator damage due to the use of unsuitable tools.

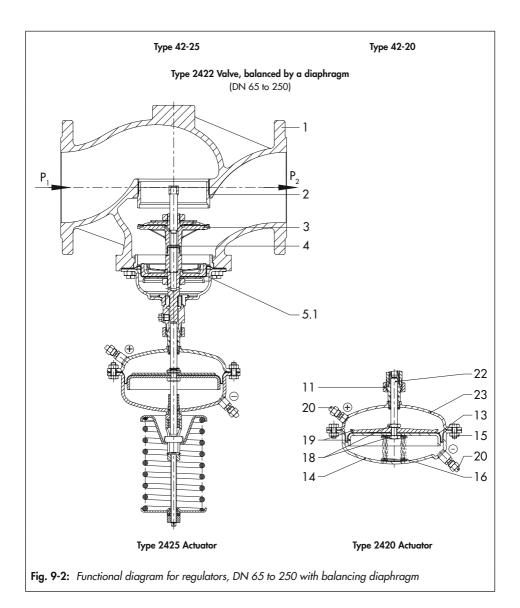
→ Only use tools approved by SAMSON (see 'Tools' in the Appendix).


i Note

The regulator was checked by SAMSON before it left the factory.

- Certain test results certified by SAMSON lose their validity when the regulator is opened. Such testing includes seat leakage and leak tests.
- The product warranty becomes void if service or repair work not described in these instructions is performed without prior agreement by SAMSON's After-sales Service.
- Only use original spare parts by SAMSON, which comply with the original specifications.

-∵ Tip


SAMSON's After-sales Service can support you in drawing up an inspection and test plan for your plant.

Legend for Fig. 9-1 and Fig. 9-2

- 1 Valve body
- 2 Seat
- 3 Plug
- 4 Plug stem
- 5 Balancing bellows
- Balancing diaphragm
- (DN 65 to 250)
- 11 Coupling nut
- 12 Diaphragm stem
- 13 Operating diaphragm
- Bottom diaphragm case (valve on top)
- 15 Nuts and bolts
- 16 Set point springs
- 17 Set point adjuster
- 18 Nut
- 19 Diaphragm plate
- 20 Control line
- 22 Diaphragm stem
- Top diaphragm case (valve on top)
- 24 Outer spring plate
- Axial needle bearing with washer
- 26 Inner spring plate
- 57 Dowel pin

EB 3007 EN 9-3

9.1 Preparing the valve for service work

- 1. Lay out the necessary material and tools to have them ready for the service work.
- 2. Put the regulator out of operation (see the 'Decommissioning' chapter).

∹Ö- Tip

We recommend removing the regulator from the pipeline before performing any service work (see the 'Removing the regulator from the pipeline' chapter).

The following service work can be performed after preparation is completed:

- Replace the actuator (see Chapter 9.4)
- Replace the seat and plug (see Chapter 9.5)
- Replace the actuator's operating diaphragm (see Chapter 9.6)

9.2 Installing the regulator after service work

→ Put the regulator back into operation (see the 'Start-up' chapter). Make sure the requirements and conditions for start-up or putting the valve back into operation are met

9.3 Service work

- → Before performing any service work, preparations must be made to the regulator (see Chapter 9.1).
- → After all service work is completed, check the regulator before putting it back into operation (see the 'Testing the regulator' chapter).

EB 3007 EN 9-5

9.4 Replacing the actuator

→ See Fig. 9-1 and Fig. 9-2

Removing the actuator

- Put the regulator out of operation (see the 'Decommissioning' chapter).
- 2. Unscrew the control lines (20).
- Unscrew the coupling nut (11) of the diaphragm actuator from the valve. Remove the actuator.

Mounting the actuator

- Place the diaphragm actuator on the valve and fasten tight the coupling nut (11). Observe the specified tightening torques (see 'Tightening torques' in the Appendix).
- Screw on the control lines (20). Observe the specified tightening torques (see 'Tightening torques' in the Appendix).
- 3. Put the regulator back into operation (see the 'Start-up' chapter).

Replacing the seat and plug

To replace seat and plug, contact SAMSON's After-sales Service.

Further information is available in the Appendix ('After-sales service' chapter).

9.6 Replacing the actuator's operating diaphragm

The associated order number is written on the actual operating diaphragm.

9.6.1 Type 2420 Actuator

→ See Fig. 9-1 and Fig. 9-2

Removing the operating diaphragm

- Put the regulator out of operation (see the 'Decommissioning' chapter).
- 2. Unscrew the control lines (20).
- Unscrew the coupling nut (11) of the diaphragm actuator from the valve. Remove the actuator.
- Clamp the coupling nut (11) of the actuator into a suitable fixture.
- 5. Unscrew nuts and bolts (15) from the actuator. Remove the bottom diaphragm case (14) together with the set point springs (16) from the top diaphragm case (23) and diaphragm stem (12).
- 6. Unscrew the nut (18) while holding the bottom diaphragm stem (22) or opposite nut stationary using a suitable tool.
- 7. Lift off the diaphragm plate (19).
- 8. Take off the operating diaphragm (13).

Mounting the operating diaphragm

- Place the new operating diaphragm on the diaphragm stem (22) ensuring the tab of the diaphragm is in the right direction.
- 2. Place on the diaphragm plate (19).
- Screw the nut (18) while holding the bottom diaphragm stem (22) or opposite nut stationary using a suitable tool. Observe the specified tightening torques (see 'Tightening torques' in the Appendix).
- 4. Insert set point springs (16).
- 5. Place on the bottom diaphragm case (14).
- Insert nuts and bolts (15) and tighten gradually in a crisscross pattern. Observe the specified tightening torques (see 'Tightening torques' in the Appendix).
- Place the diaphragm actuator on the valve and fasten tight the coupling nut (11). Observe the specified tightening torques (see 'Tightening torques' in the Appendix).
- Screw on the control lines (20). Observe the specified tightening torques (see 'Tightening torques' in the Appendix).
- 9. Put the regulator back into operation (see the 'Start-up' chapter).

9.6.2 Type 2425 Actuator

→ See Fig. 9-1 and Fig. 9-2

Removing the operating diaphragm

- Put the regulator out of operation (see the 'Decommissioning' chapter).
- 2. Completely relieve the tension from the set point springs (16) by turning the set point adjuster (17) counterclockwise (4).

A WARNING

Stored energy in the set point springs can cause components to move in an uncontrolled manner resulting in injury to hands or fingers.

- 3. Unscrew the control lines (20).
- 4. Unscrew the coupling nut (11) of the diaphragm actuator from the valve. Remove the actuator.
- 5. Clamp the coupling nut (11) of the actuator into a suitable fixture.
- 6. Unscrew the set point adjuster (17). Lift off the needle bearing with washer (25), spring plate (24, 26) and set point springs (16).
- 7. Pull down the bottom diaphragm case (14) from the diaphragm stem (22).
- 8. Pull the dowel pin (57) out of the nut (18) and diaphragm stem (12).
- Unscrew the nut (18) while holding the bottom diaphragm stem (22) or opposite nut stationary using a suitable tool.
- 10. Lift off the diaphragm plate (19).
- 11. Take off the operating diaphragm (13).

EB 3007 EN 9-7

Mounting the operating diaphragm

- Place the new operating diaphragm on the diaphragm stem (22) ensuring the tab of the diaphragm is in the right direction.
- 2. Place on the diaphragm plate (19).
- Screw the nut (18) while holding the bottom diaphragm stem (22) or opposite nut stationary using a suitable tool. Observe the specified tightening torques (see 'Tightening torques' in the Appendix).
- 4. Fix the nut (12) and diaphragm stem (57) in place with dowel pin (18).
- 5. Place on the bottom diaphragm case (14) on the diaphragm stem (22).
- 6. Place on the set point springs (16), spring plate (24, 26) and needle bearing with washer (25).
- 7. Screw on the set point adjuster (17).
- Place the diaphragm actuator on the valve and fasten tight the coupling nut (11). Observe the specified tightening torques (see 'Tightening torques' in the Appendix).
- Screw on the control lines (20). Observe the specified tightening torques (see 'Tightening torques' in the Appendix).
- 10. Put the regulator back into operation (see the 'Start-up' chapter).

9.7 Ordering spare parts and operating supplies

Contact your nearest SAMSON subsidiary or SAMSON's After-sales Service for information on spare parts, lubricants and tools.

Spare parts

See the Appendix for details on spare parts.

Lubricant

Contact SAMSON's After-sales Service for more information on Jubricants.

Tools

Contact SAMSON's After-sales Service for more information on tools

10 Decommissioning

The work described in this chapter is only to be performed by personnel appropriately qualified to carry out such tasks.

A DANGER

Risk of bursting due to incorrect opening of pressurized equipment or components.

Regulators and pipelines are pressure equipment that may burst when handled incorrectly. Flying projectile fragments or the release of process medium under pressure can cause serious injury or even death.

Before working on the regulator:

- → Depressurize all plant sections concerned and the regulator.
- → Drain the process medium from all the plant sections concerned as well as the valve.

A WARNING

Risk of burn injuries due to hot or cold components and pipeline.

Regulator components and the pipeline may become very hot or cold. Risk of burn injuries.

- Allow components and pipelines to cool down or warm up to the ambient temperature.
- → Wear protective clothing and safety gloves.

A WARNING

Risk of personal injury due to pressurized components and process medium being discharged.

Incorrect opening of pressure equipment or mounting parts may lead to the process medium escaping to the atmosphere.

- → Do not loosen the control line while the valve is pressurized.
- → Do not start up the regulator until all parts have been mounted.

A WARNING

Risk of hearing loss or deafness due to loud noise.

Noise emission (e.g. cavitation) may occur during operation caused by the process medium and the operating conditions.

→ Wear hearing protection when working near the valve. Follow the instructions given by the plant operator.

A WARNING

Crush hazard arising from moving parts.

- Do not insert hands or fingers between the set point springs while the regulator is in operation.
- → Do not insert hands or fingers between the pillars and set point springs while the regulator is in operation.
- → Do not insert hands or fingers between the spring plate and crossbeam while the regulator is in operation.

EB 3007 EN 10-1

Decommissioning

→ Before starting any work on the regulator, depressurize plant sections as well as the regulator.

A WARNING

Risk of personal injury due to residual process medium in the regulator.

While working on the regulator, residual process medium can escape and, depending on its properties, may lead to personal injury, e.g. (chemical) burns.

→ Wear protective clothing, safety gloves and eye protection.

To decommission the regulator for service work or disassembly, proceed as follows:

- 1. Close the shut-off valve (1) on the upstream side of the regulator.
- 2. Close the shut-off valve (6) on the down-stream side of the regulator.
- 3. Depressurize the plant.
- 4. Completely drain the pipelines and valve.
- If necessary, allow the pipeline and regulator components to cool down or warm up to the ambient temperature.

11 Removal

The work described in this chapter is only to be performed by personnel appropriately qualified to carry out such tasks.

A WARNING

Risk of burn injuries due to hot or cold components and pipeline.

Regulator components and the pipeline may become very hot or cold. Risk of burn injuries.

- Allow components and pipelines to cool down or warm up to the ambient temperature.
- Wear protective clothing and safety gloves.

A WARNING

Risk of personal injury due to residual process medium in the regulator.

While working on the regulator, residual process medium can escape and, depending on its properties, may lead to personal injury, e.g. (chemical) burns.

→ Wear protective clothing, safety gloves and eye protection.

Before removing the valve, make sure the following conditions are met:

 The regulator is put out of operation (see the 'Decommissioning' chapter).

11.1 Removing the regulator from the pipeline

- Support the regulator to hold it in place when separated from the pipeline (see the 'Shipment and on-site transport' chapter).
- 2. Unbolt the flange joint.
- Remove the regulator from the pipeline (see the 'Shipment and on-site transport' chapter).

11.2 Removing the actuator from the valve

See the 'Servicing' chapter.

EB 3007 EN 11-1

12 Repairs

If the regulator does not function properly according to how it was originally sized or does not function at all, it is defective and must be repaired or exchanged.

NOTICE

Risk of regulator damage due to incorrect service or repair work.

→ Contact SAMSON's After-sales Service for repair work.

12.1 Returning devices to SAMSON

Defective devices can be returned to SAM-SON for repair.

Proceed as follows to return devices:

- Exceptions apply concerning some special device models
 - www.samsongroup.com > Service & Support > After-sales Service.
- 2. Send an e-mail
 - retouren@samsongroup.com to register the return shipment including the following information:
 - Туре
 - Material number
 - Item numbers of accessories
 - Original order
 - Completed Declaration on Contamination, which can be downloaded from our website at
 - www.samsongroup.com > Service
 - & Support > After-sales Service.

After checking your registration, we will send you a return merchandise authorization (RMA).

- Attach the RMA (together with the Declaration on Decontamination) to the outside of your shipment so that the documents are clearly visible.
- Send the shipment to the address given on the RMA.

i Note

Further information on returned devices and how they are handled can be found at

www.samsongroup.com > Service & Support > After-sales Service.

EB 3007 EN 12-1

13 Disposal

SAMSON is a producer registered in Europe, agency in charge https://www.samsongroup. com/en/about-samson/ environment-social-governance/ material-compliance/wasteelectrical-and-electronicequipment-weee-and-its-safedisposal/.

WEEE reg. no.: DE 62194439

Information on substances listed as substances of very high concern (SVHC) on the candidate list of the REACH regulation can be found in the document "Additional Information on Your Inquiry/Order", which is added to the order documents, if applicable. This document includes the SCIP number assigned to the devices concerned. This number can be entered into the database on the European Chemicals Agency (ECHA) website (https://www.echa.europa.eu/ scip-database) to find out more information on the SVHC contained in the device.

i Note

SAMSON can provide you with a recycling passport on request. Simply e-mail us at aftersalesservice@samsongroup.com giving details of your company address.

On request, SAMSON can appoint a service provider to dismantle and recycle the product as part of a distributor take-back scheme.

- → Observe local, national and international refuse regulations.
- → Do not dispose of components together with your other household waste.

EB 3003 EN 13-1

14 Certificates

The EU declarations of conformity are included on the next pages:

- EU declaration of conformity in compliance with Pressure Equipment Directive 2014/68/EU on page 14-2 ff.
- EU declaration of conformity in compliance with Machinery Directive
 2006/42/EC for Type 42-20 and
 Type 42-25 Regulators on page 14-8 ff.
- Declaration of incorporation in compliance with Machinery Directive
 2006/42/EC for the Type 2422 Valve and Type 2420 and Type 2425 Actuator on page 14-10 ff.

EB 3007 EN 14-1

EU DECLARATION OF CONFORMITY TRANSLATION

Module A

For the following products, SAMSON hereby declares under its sole responsibility:

Devices	Series	Type	Version	
	43	2432	DIN EN, body, CC499K and EN-GJS-400-18-LT, DN 50, PN 25, fluids G2, L2, L11)	
	43	2436	DIN EN, body, CC499K and EN-GJS-400-18-LT, DN 50, PN 25, fluids G2, L2, L11)	
	43	2437	DIN EN, body, CC499K and EN-GJS-400-18-LT, DN 50, PN 25, fluids G2, L2, L11)	
Self-operated Regulators			DIN EN, body, EN-GJS-400-18-LT, DN 50, PN 25, fluids G2, L2, L11)	
		2111	DIN EN, body, 1.0619 and 1.4408, DN 40-50, PN 40, fluids G2, L2, L11)	
			ANSI, body, A216 WCC and A351 CF8M, NPS 11/2-2, Class 300, fluids G2, L2, L11)	
		2119	DIN EN, body, EN-GJL-250 and 1.0619, DN 65-125, PN 16, fluids G2, L2, L11)	
			DIN EN, body, 1.0619, DN 50-80, PN 25, fluids G2, L2, L11)	
Three-way valve			DIN EN, body, 1.0619 and 1.4408, DN 40-50, PN 40, fluids G2, L2, L11)	
•			ANSI, body, A216 WCC and A351 CF8M, NPS 21/2-4, Class 150, fluids G2, L2, L11)	
			ANSI, body, A216 WCC and A351 CF8M, NPS 11/2, Class 300, fluids G2, L2, L11)	
			DIN EN, body, EN-GJS-400-18-LT, DN 50, PN 25, fluids G2, L2, L11)	
Control valve		3222	DIN EN, body, CC499K, DN 32-40, PN 25, all fluids	
Three-way valve		3226	DIN EN, body, CC499K, DN 50, PN 25, fluids G2, L2 ²)	
Three-way valve		3260	DIN EN, body, EN-GJL-250, DN 65-200, PN 16, fluids G2, L22)	
			DIN EN, body, EN-GJS-400-18-LT, DN 50-80, PN 25, fluids G2, L2, L11)	
Globe valve	V2001	3531	DIN EN, body, 1.0619 and 1.4408, DN 32-40, PN 25, all fluids	
Three-way valve		3535	ANSI, body, A216 WCC and A351 CF8M, NPS 11/2-2, Class 150, all fluids	
			DIN EN, body, EN-GJL-250, DN 65-125, PN 16, fluids G2, L2, L1 ¹⁾	
			DIN EN, body, EN-GJS-400-18-LT, DN 50-80, PN 25, fluids G2, L2, L1 ¹⁾	
Control valve		3214	ANSI, body, A126 B, NPS 3-4, Class 125, fluids G2, L2, L1 ¹⁾	
			ANSI, body, A216 WCC and A351 CF8M, NPS 1½-2, Class 150, all fluids	
			DIN EN, body, EN-GJL-250 and EN-GJS-400-18-LT, DN 65-125, PN 16, fluids G2, L2, L1 ¹⁾	
			DIN EN, body, EN-GSE-253 and EN-GSS-400-10-E1, DN 03-125, TN 10, Italias G2, E2, E1-	
			DIN EN, body, 1.0619 and 1.4408, DN 32-50, PN 16, all fluids	
	42	2423	DIN EN, body, 1.0619 and 1.4408, DN 32-40, PN 25, all fluids	
			ANSI, body, A126 B, NPS 3-4, Class 125, fluids G2, L2, L1 ¹⁾	
Self-operated Regulators			ANSI, body, A216 WCC and A351 CF8M, NPS 1½-2, Class 150, all fluids	
oeii-operateu rregulatora			DIN EN, body, EN-GJL-250 and EN-GJS-400-18-LT, DN 65-125, PN 16, fluids G2, L2, L1 ¹⁾	
			DIN EN, body, EN-G3S-250 and EN-G3S-400-16-E1, DN 65-125, PN 16, Italias G2, E2, E17 DIN EN, body, EN-G3S-400-18-LT, DN 50-80, PN 25, fluids G2, L2, L11)	
	42	2422	DIN EN, body, 1.0619, 1.4408 and 1.6220+QT, DN 32-50, PN 16, all fluids	
	42		ANSI, body, A126 B, NPS 3-4, Class 125, fluids G2, L2, L1 ⁽¹⁾	
			ANSI, body, A216 WCC, A351 CF8M and A352 LCC, NPS 1½-2, Class 150, all fluids	
Strainers	1N/1NI			
Strainers	1N/1NI	2601	DIN EN, body, CB752S, G 2 (DN50), PN25, fluids G2, L2 ²⁾ DIN EN, body, EN-GJL-250, DN 200-250, PN 10, fluids G2, L2, L1 ¹⁾	
		2602		
Strainers	2N/2NI		DIN EN, body, EN-GJL-250, DN 65-125, PN 16, fluids G2, L2, L11)	
Strainers	ZIN/ZINI		DIN EN, body, EN-GJS-400-18-LT, DN 100-125, PN 16, fluids G2, L2, L1 ¹⁾	
			DIN EN, body, EN-GJS-400-18-LT, DN 50-80, PN 25, fluids G2, L2, L11)	
			DIN EN, body, 1.4408, DN 32-50, PN 16, all fluids	
		2373/2375	ANSI, body, A995 4A and A995 5A, NPS 11/2-2, Class 150, all fluids	
	44	2440 (44-0B) 2441 (44-1B) 2446 (44-6B)	DIN EN, body, EN-GJS-400-18-LT, DN 50, PN 25, fluids G2, L2, L1 ¹⁾	
Self-operated Regulators		2442 (44-2) 2443 (44-3) 2444 (44-4) 2447 (44-7) 2449 (44-9)	DIN EN, body, EN-GJS-400-18-LT and CC499K, DN 50, PN 25, fluids G2, L2, L1 ¹⁾	

Revision 01

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismuellerstrasse 3 · 60314 Frankfurt am Main, Germany Page 1 of 3

EU DECLARATION OF CONFORMITY TRANSLATION

Devices	Series	Type	Version	
	45	2451 (45-1) 2452 (45-2) 2453 (45-3) 2454 (45-4) 2456 (45-6) 2459 (45-9)	DIN EN, body, EN-GJS-400-18-LT and CC499K, DN 50, PN 25, fluids G2, L2, L1 ⁽¹⁾	
	46	2465 (46-5) 2466 (46-6) 2467 (46-7) 2469 (46-9)	DIN EN, body, EN-GJS-400-18-LT and CC499K, DN 50, PN 25, fluids G2, L2, L1 ⁽¹⁾	
	47	2471 (47-1) 2474 (47-4) 2475 (47-5) 2479 (47-9)	DIN EN, body, EN-GJS-400-18-LT and CC499K, DN 50, PN 25, fluids G2, L2, L1 ¹⁾	
	48	2488 2489	DIN EN, body, EN-GJS-400-18-LT and CC499K, DN 50, PN 25, fluids G2, L2, L1 ¹⁾	
			DIN EN, body, EN-GJS-400-18-LT, DN 50, PN 25, fluids G2, L2, L11)	
		2405	ANSI, body, A216 WCC and A351 CF8M, NPS 11/2-2, Class 150, all fluids	
			DIN EN, body, EN-GJL-250, DN 65-125, PN 16, fluids G2, L2, L11)	
	40	0400	DIN EN, body, EN-GJS-400-18-LT, DN 50, PN 25, fluids G2, L2, L11)	
		2406	ANSI, body, A126 B, NPS 3-4, Class 125, fluids G2, L2, L11)	
			ANSI, body, A216 WCC and A351 CF8M, NPS 11/2-2, Class 150, all fluids	
			DIN EN, body, EN-GJL-250, DN 65-100, PN 16, fluids G2, L2, L11)	
		2412	DIN EN, body, EN-GJS-400-18-LT, DN 50-80, PN 25, fluids G2, L2, L11)	
	41	2417	ANSI body, A126 B, NPS 3-4, Class 125, fluids G2, L2, L11)	
Self-operated Regulators			ANSI, body, A216 WCC and A351 CF8M, NPS 11/2-2, Class 150, all fluids	
			DIN EN, body, 1.0619, 1.4408, 1.4571 and 1.4401/1.4404, DN 32-50, PN 16, all fluids	
	42	2421 RS	DIN EN, body, 1.0619, 1.4408, 1.4571 and 1.4401/1.4404, DN 32-40, PN 25, all fluids	
			ANSI, body, A216 WCC, A351 CF8M and A182 F316/A182 F316L, NPS 1½-2, Class 150, all fluids	
			DIN EN, body, EN-GJL-250, DN 65-200, PN 16, fluids G2, L2 ²⁾	
		2331	DIN EN, body, EN-GJS-400-18-LT, DN 65-150, PN 16, fluids G2, L22)	
			DIN EN, body, EN-GJS-400-18-LT, DN 65-125, PN 25, fluids G2, L22)	
			DIN EN, body 1.0619, DN 65-200, PN 16, fluids G2, L2 ²⁾	
			DIN EN, body 1.0619, DN 65-100, PN 40, fluids G2, L2 ²⁾	
			DIN EN, body 1.0619, DN 250, PN 25, fluids L11)	
		2337	DIN EN, body 1.0619, DN 250, PN 40, fluids L11)	
			DIN EN, body, EN-GJL-250, DN 65-125, PN 16, fluids G2, L2, L11)	
		2333 2335	DIN EN, body, EN-GJS-400-18-LT, DN 65-80, PN 25, fluids G2, L2, L11)	
			ANSI body, A126 B, NPS 3-4, Class 125, fluids G2, L2, L11)	
			DIN EN, body, EN-GJL-250, DN 65-125, PN 16, fluids G2, L2, L11)	
1	-	2334	DIN EN, body, EN-GJS-400-18-LT, DN 65-125, PN 16, fluids G2, L2, L11)	
			DIN EN, body, EN-GJS-400-18-LT, DN 65-80, PN 25, fluids G2, L2, L11)	
1			ANSI, body, A126 B, NPS 3-4, Class 125, fluids G2, L2, L1 ¹⁾	
1	-	2404-1	DIN EN, body, EN-GJL-250, DN 65-125, PN16, fluids G2, L2, L1 ¹⁾	
			ANSI body, A126 B, NPS 3-4, Class 125, fluids G2, L2, L1 ¹⁾	
			ANSI, body, A216 WCC und A351 CF8M, NPS 11/2-2, Class 150, all fluids	
		2404-2	DIN EN, body, EN-GJL-250, DN 65-125, PN 16, fluids G2, L2, L11)	
1) Gaens according to Article 4			ANSI, body, A126 B, NPS 3-4, Class 125, fluids G2, L2, L11)	

Gases according to Article 4(1)(c.i), second indent Liquids according to Article 4(1)(c.ii)

Revision 01

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismuellerstrasse 3 · 60314 Frankfurt am Main, Germany Page 2 of 3

14-3 **EB 3007 EN**

²⁾ Gases according to Article 4(1)(c.i), second indent Liquids according to Article 4(1)(c.ii), second indent

EU DECLARATION OF CONFORMITY TRANSLATION

That the products mentioned above comply with the requirements of the following standards:

Directive of the European Parliament and of the Council on the harmonization of the laws of the Member States relating to the making available on the market of pressure equipment	2014/68/EU	of 15. May 2014
Applied conformity assessment procedure for fluids according to Article 4(1)		Module A

Technical standards applied: DIN EN 12516-2, DIN EN 12516-3, ASME B16.34

Manufacturer: SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany

Frankfurt am Main, 05. June 2024

ppa. Norbert Tollas Senior Vice President

i.V. Peter Scheermesser Director

i. v. P. Munio

Product Maintenance & Engineered Products

Revision 01

EU DECLARATION OF CONFORMITY TRANSLATION

Module H / N° CE-0062-PED-H-SAM 001-22-DEU-rev-A

For the following products, SAMSON hereby declares under its sole responsibility:

Devices	Series	Type	Version
			DIN EN, body, EN-GJL-250 and 1.0619, DN 150, PN 16, fluids G2, L2, L11)
		2119	DIN EN, body, 1.0619, DN 100-150, PN 25, fluids G2, L2, L11)
Three-way valve			DIN EN, body, 1.0619 and 1.4408, DN 65-150, PN 40, fluids G2, L2, L11)
			ANSI, body, A216 WCC and A351 CF8M, NPS 6, Class 150, fluids G2, L2, L11)
			ANSI, body, A216 WCC and A351 CF8M, NPS 2-6, Class 300, fluids G2, L2, L11)
Self-operated Regulators		3222	DIN EN, body, CC499K, DN 50, PN 25, all fluids
Three-way valve		3260	DIN EN, body, EN-GJL-250, DN 250-300, PN 16, fluids G2, L2 ¹⁾
Globe valve	V2001	3531	DIN EN, body, 1.0619 and 1.4408, DN 50-80, PN 25, all fluids
Three-way valve	V2001	3535	ANSI, body, A216 WCC and A351 CF8M, NPS 21/2-3, Class 150, all fluids
			DIN EN, body, EN-GJL-250, DN 150-400, PN 16, fluids G2, L2, L1 ¹⁾
			DIN EN, body, EN-GJS-400-18-LT, DN 100-150, PN 25, fluids G2, L2, L1 ¹⁾
Control valve		3214	DIN EN, body, 1.0619, DN 32-400, PN 40, all fluids
COILLOI VAIVE		3214	ANSI, body, A126 B, NPS 6-10, Class 125, fluids G2, L2, L11)
			ANSI, body, A216 WCC, NPS 21/2-10, Class 150, all fluids
			ANSI, body, A216 WCC, NPS 11/2-10, Class 300, all fluids
			DIN EN, body, EN-GJL-250, DN 150-250, PN 16, fluids G2, L2, L1 ¹⁾
			DIN EN, body, EN-GJS-400-18-LT, DN 150, PN 16, fluids G2, L2, L11)
			DIN EN, body, EN-GJS-400-18-LT, DN 100-150, PN 25, fluids G2, L2, L11)
			DIN EN, body, 1.0619 and 1.4408, DN 65-250, PN 16, all fluids
	42	2423	DIN EN, body, 1.0619 and 1.4408, DN 50-250, PN 25, all fluids
			DIN EN, body, 1.0619 and 1.4408, DN 32-250, PN 40, all fluids
			ANSI, body, A126 B, NPS 6-10, Class 125, fluids G2, L2, L11)
			ANSI, body, A216 WCC and A351 CF8M, NPS 21/2-10, Class 150, all fluids
			ANSI, body, A216 WCC and A351 CF8M, NPS 11/2-10, Class 300, all fluids
			DIN EN, body, EN-GJL-250, DN 150-400, PN 16, fluids G2, L2, L1 ¹⁾
			DIN EN, body, EN-GJS-400-18-LT, DN 100-150, PN 25, fluids G2, L2, L11)
			DIN EN, body, 1.0619 and 1.4408, DN 65-400, PN 16, all fluids
			DIN EN, body, 1.0619 and 1.4408, DN 200-400, PN 25, all fluids
			DIN EN, body, 1.0619 and 1.4408, DN 32-400, PN 40, all fluids
			DIN EN, body, 1.0460, DN 40-50, PN 40, all Fluids
Self-operated Regulators			DIN EN, body, 1.6220+QT, DN 65-250, PN 16, all fluids
	42	2422	DIN EN, body, 1.6220+QT, DN 200-250, PN 25, all fluids
			DIN EN, body, 1.6220+QT, DN 32-250, PN 40, all fluids
			ANSI, body, A126 B, NPS 6-16, Class 125, fluids G2, L2, L1 ¹⁾
			ANSI, body, A216 WCC and A351CF8M, NPS 21/2-16, Class 150, all fluids
			ANSI, body, A216 WCC and A351CF8M, NPS 11/2-16, Class 300, all fluids
			ANSI, body, A105, NPS 11/2-2, Class 300, all fluids
			ANSI, body, A352 LCC, NPS 21/2-10, Class 150, all fluids
			ANSI, body, A352 LCC, NPS 11/4-10, Class 300, all fluids
			DIN EN, body, 1.0619 and 1.4408, DN 65-150, PN 16, all fluids
			DIN EN, body, 1.0619 and 1.4408, DN 50-150, PN 25, all fluids
			DIN EN, body, 1.0619 and 1.4408, DN 32-150, PN 40, all fluids
	42	2421RS	DIN EN, body, 1.4571 and 1.4401/1.4404, DN 50, PN 25, all fluids
			DIN EN, body, 1.4571 and 1.4401/1.4404, DN 32-50, PN 40, all fluids
			ANSI, body, A216 WCC and A351 CF8M, NPS 21/2-6, Class 150, all fluids
			ANSI, body, A216 WCC and A351 CF8M, NPS 11/2-6, Class 300, all fluids

Revision 01

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismuellerstrasse 3 · 60314 Frankfurt am Main, Germany Page 1 of 3

EB 3007 EN 14-5

EU DECLARATION OF CONFORMITY TRANSLATION

Devices	Series	Type	Version
		0405	DIN EN, body, 1.0619, 1.4571, 1.4404, 1.4408, 1.0460, DN 32-50, PN40, all fluids
		2405	ANSI, body, A105, A182 F316L, A351 CF8M, A216 WCC, NPS 11/2-2, Class 300, all fluids
			DIN EN, body, EN-GJL-250, DN 150, PN 16, fluids G2, L2, L11)
			DIN EN, body, 1.0619 and 1.4408, DN 32-150, PN 40, all fluids
	40		DIN EN, body, 1.0460 and 1.4404, DN 32-50, PN 40, all fluids
		2406	ANSI, body, A126 B, NPS 6, Class 125, fluids G2, L2, L11)
			ANSI, body, A216 WCC and A351 CF8M, NPS 21/2-6, Class 150, all fluids
			ANSI, body, A216 WCC and A351 CF8M, NPS 11/2-6, Class 300, all fluids
			ANSI, body, A105 and A182 F316L, NPS 11/2-2, Class 300, all fluids
			DIN EN, body, EN-GJS-400-18-LT, DN 100, PN25, fluids G2, L2, L11)
			DIN EN, body, 1.0619 and 1.4408, DN 32-100, PN 40, all fluids
	41	2412	DIN EN, body, 1.0460, 1.4571 and 1.4404, DN 32-80, PN 40, all fluids
	41	2417	ANSI, body, A216 WCC and A351 CF8M, NPS 21/2-4, Class 150, all fluids
			ANSI, body, A216 WCC and A351 CF8M, NPS 11/2-4, Class 300, all fluids
			ANSI, body, A105 and A182 F316L, NPS 11/2-3, Class 300, all fluids
			DIN EN, body, EN-GJL-250, DN 150, PN16, fluids G2, L2, L11)
			DIN EN, body, 1.0619 und 1.4408, DN 32-150, PN 40, all fluids
		2404-1	ANSI, body, A126 B, NPS 6, Class 125, fluids G2, L2, L11)
			ANSI, body, A216 WCC und A351 CF8M, NPS 21/2-6, Class 150, all fluids
			ANSI, body, A216 WCC und A351 CF8M, NPS 11/4-6, Class 300, all fluids
			DIN EN, body, EN-GJL-250, DN 150-400, PN 16, fluids G2, L2, L1 ¹⁾
			DIN EN, body, 1.0619 und 1.4408, DN 65-400, PN 16, all fluids
			DIN EN, body, 1.0619 und 1.4408, DN 65-400, PN 40, all fluids
		2404-2	ANSI, body, A126 B, NPS 6-16, Class 125, fluids G2, L2, L11)
Self-operated Regulators			ANSI, body, A216 WCC und A351 CF8M, NPS 2%-16, Class 150, all fluids
			ANSI, body, A216 WCC und A351 CF8M, NPS 21/2-10, Class 300, all fluids
			DIN EN, body, EN-GJL-250, DN 250, PN 16, fluids G2, L2 ¹⁾
			DIN EN, body, 1.0619, DN 250, PN 16, fluids G2, L2 ¹⁾
		2331	DIN EN, body, 1.0619, DN 200-250, PN 25, fluids G2, L21)
			DIN EN, body, 1.0619, DN 125-250, PN 40, fluids G2, L21)
			DIN EN, body, EN-GJL-250, DN 150-400, PN 16, fluids G2, L2, L1 ¹⁾
			DIN EN, body, EN-GJS-400-18-LT, DN 100-150, PN 25, fluids G2, L2, L1 ¹⁾
			DIN EN, body, 1.0619 and 1.4408, DN 65-400, PN 16, all fluids
		2333	DIN EN, body, 1.0619 and 1.4408, DN 200-400, PN 25, all fluids
		2335	DIN EN, body, 1.0619 and 1.4408, DN 65-400, PN 40, all fluids
			ANSI, body, A126 B, NPS 6-16, Class 125, fluids G2, L2, L1 ¹⁾
			ANSI, body, A216 WCC and A351 CF8M, NPS 21/4-16, Class 150, all fluids
			ANSI, body, A216 WCC and A351 CF8M, NPS 21/4-16, Class 300, all fluids
			DIN EN, body, EN-GJL-250, DN 150-400, PN 16, fluids G2, L2, L11)
			DIN EN, body, EN-GJS-400-18-LT, DN 150, PN 16, fluids G2, L2, L11)
			DIN EN, body, EN-GJS-400-18-LT, DN 100-150, PN 25, fluids G2, L2, L11)
			DIN EN, body, 1.0619 and 1.4408, DN 65-400, PN 16, all fluids
		2334	DIN EN, body, 1.0619 and 1.4408, DN 200-400, PN 25, all fluids
			DIN EN, body, 1.0619 and 1.4408, DN 65-400, PN 40, all fluids
			ANSI, body, A126 B, NPS 6-16, Class 125, fluids G2, L2, L11)
			ANSI, body, A216 WCC and A351 CF8M, NPS 21/4-16, Class 150, all fluids
			ANSI, body, A216 WCC and A351 CF8M, NPS 21/4-16, Class 300, all fluids
		2373	DIN EN, body, 1.4469 and 1.4470, DN 32-50, PN 40, all fluids
		2375	ANSI, body, A995 5A and A995 4A, NPS 11/2-2, Class 300, all fluids
			DIN EN, body, EN-GJL-250, DN 150-250, PN 16, fluids G2, L2, L1 ¹⁾
			DIN EN, body, EN-GJS-400-18-LT, DN 150, PN 16, fluids G2, L2, L1 ¹⁾
Strainers	2N/2NI	2602	DIN EN, body, EN-GJS-400-18-LT, DN 100-150, PN 25, fluids G2, L2, L1 ¹⁾
			DIN EN, body, 1.0619, DN 100-250, PN 16, all fluids
	1	1	, y,, we see made or od measure

Revision 01

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismuellerstrasse 3 · 60314 Frankfurt am Main, Germany Page 2 of 3

14-6 EB 3007 EN

EU DECLARATION OF CONFORMITY **TRANSIATION**

Devices	Series	Type	Version	
		2602	DIN EN, body, 1.0619, DN 200-250, PN 25, all fluids	
Strainers	2N/2NI		DIN EN, body, 1.0619, DN 32-250, PN 40, all fluids	
Strainers	ZIV/ZINI		DIN EN, body, 1.4408, DN 65-100, PN 16, all fluids	
			DIN EN, body, 1.4408, DN 32-100, PN 40, all fluids	

¹⁾ Gases according to Article 4(1)(c.i), second indent Liquids according to Article 4(1)(c.ii)

That the products mentioned above comply with the requirements of the following standards:				
Directive of the European Parliament and of the Council on the harmonization of the laws of the Member States relating to the making available on the market of pressure equipment	2014/68/EU	of 15. May 2014		
Applied conformity assessment procedure for fluids according to Article 4(1)	Module H	by Bureau Veritas 0062		

The manufafacturer's quality management system is monitored by the following notified body: Bureau Veritas Services SAS, 4 place des Salsons, 92400 Courbevole, France Technical standards applied: DIN EN 12516-2, DIN EN 12516-3, ASME B16.34

Manufacturer: SAMSON AG, Weismuellerstrasse 3, 60314 Frankfurt am Main, Germany

Frankfurt am Main, 05. June 2024

opc. la. vely ppa. Norbert Tollas Senior Vice President Global Operations

i.V. Peter Scheermesser Director Product Maintenance & Engineered Products

i. V. P. Munio

Revision 01

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismuellerstrasse 3 · 60314 Frankfurt am Main, Germany

Page 3 of 3

EB 3007 EN 14-7

EU DECLARATION OF CONFORMITY TRANSIATION

Declaration of Conformity of Final Machinery

in accordance with Annex II. section 1.A. of the Directive 2006/42/EC

For the following products:

Type 42-20 Differential Pressure Regulator consisting of Type 2422 Valve and Type 2420

We hereby declare that the machinery mentioned above complies with all applicable requirements stipulated in Machinery Directive 2006/42/EC.

For product descriptions refer to:

- Type 42-20 Differential Pressure Regulator: Mounting and Operating Instructions EB 3007

Referenced technical standards and/or specifications:

- VCI, VDMA, VGB: "Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen, Mai 2018" [German only]
- VCI, VDMA, VCB: "Zusátzdokument zum Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen vom Mai 2018" [German only], based on DIN EN ISO 12100:2011-03

Comment

Information on residual risks of the machinery can be found in the mounting and operating instructions of the valve and actuator as well as in the referenced documents listed in the mounting and operating instructions.

Persons authorized to compile the technical file: SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany Frankfurt am Main, 4 March 2022

Norbert Tollas

Global Operations

Peter Scheermesser

Director

Product Life Cycle Management and ETO Development for Valves and Actuators

Revision no. 00

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismüllerstraße 3 · 60314 Frankfurt, Germany

Page 1 of 1

14-8 EB 3007 EN

EU DECLARATION OF CONFORMITY

Declaration of Conformity of Final Machinery

in accordance with Annex II, section 1.A. of the Directive 2006/42/EC

For the following products:

Type 42-25 Differential Pressure Regulator consisting of Type 2422 Valve and Type 2425 Actuator

We hereby declare that the machinery mentioned above complies with all applicable requirements stipulated in Machinery Directive 2006/42/EC.

For product descriptions refer to:

- Type 42-25 Differential Pressure Regulator: Mounting and Operating Instructions EB 3007

Referenced technical standards and/or specifications:

- VCI, VDMA, VGB: "Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen, Mai 2018" [German only]
- VCI, VDMÁ, VGB: "Zusatzdokument zum Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen vom Mai 2018" [German only], based on DIN EN ISO 12100:2011-03

Comment:

Information on residual risks of the machinery can be found in the mounting and operating instructions of the valve and actuator as well as in the referenced documents listed in the mounting and operating instructions.

Persons authorized to compile the technical file: SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany Frankfurt am Main. 4 March 2022

Norbert Tollas
Director
Global Operations

opc. la. July

Peter Scheermesser

Director

Product Life Cycle Management and ETO Development for Valves and Actuators

Revision no. 00

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismüllerstraße 3 · 60314 Frankfurt, Germany

Page 1 of 1

EB 3007 EN 14-9

DECLARATION OF INCORPORATION

Declaration of Incorporation in Compliance with Machinery Directive 2006/42/EC

For the following product: Type 2422 Valve

We certify that the Type 2422 Valve is partly completed machinery as defined in the Machinery Directive 2006/42/EC and that the safety requirements stipulated in Annex I, 1.1.2, 1.1.3, 1.1.5, 1.3.2, 1.3.2, 1.3.4 and 1.3.7 are observed. The relevant technical documentation described in Annex VII, part B has been compiled.

Products we supply must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of the Machinery Directive 2006/42/EC.

Operators are obliged to install the products observing the accepted industry codes and practices (good engineering practice) as well as the mounting and operating instructions. Operators must take appropriate precautions to prevent hazards that could be caused by the process medium and operating pressure in the valve as well as by the signal pressure and moving parts.

The permissible limits of application and mounting instructions for the products are specified in the associated mounting and operating instructions; the documents are available in electronic form on the Internet at www.samsongroup.com.

For product descriptions refer to:

- Types 1, 4 and 4u Temperature Regulators: Mounting and Operating Instructions EB 2111/2121/2123
- Type 2404-2 Excess Pressure Valve with pilot valve. Mounting and Operating Instructions EB 2540
- Type 2422/2424 Pressure Reducing Valve: Mounting and Operating Instructions EB 2547
- Type 2422/2425 Excess Pressure Valve: Mounting and Operating Instructions EB 2549
- Type 2333 Pressure Reducing Valve with pilot valve: Mounting and Operating Instructions EB 2552-1
 Type 2335 Excess Pressure Valve with pilot valve: Mounting and Operating Instructions EB 2552-2
- Type 2335 Excess Flessure valve with pilot valve, injourning and Operating Instructions EB 3210

 Type 2334 Universal Regulator with pilot valve; Mounting and Operating Instructions EB 3210
- Type 42-20, Type 42-25 Differential Pressure Regulators: Mounting and Operating Instructions EB 3007
- Type 42-24, Type 42-28 Differential Pressure Regulators: Mounting and Operating Instructions EB 3003
 Safety Temperature Limiters (STL) with Type 2212 Safety Thermostat:
- Mounting and Operating Instructions EB 2046
- Type 2213 Safety Temperature Monitor (STM): Mounting and Operating Instructions EB 2043

Referenced technical standards and/or specifications:

- VCI, VDMA, VGB: "Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen, Mai 2018" [German only]
- VCI, VDMA, VGB: "Zusatzdokument zum Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen vom Mai 2018" [German only], based on DIN EN ISO 12100:2011-03

Comments

- See mounting and operating instructions for residual hazards.
- Also observe the referenced documents listed in the mounting and operating instructions.

Persons authorized to compile the technical file:

SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany Frankfurt am Main, 10 November 2021

Stephan Giesen Director Product Management Peter Scheermesser

i. V. P. Munite

Director

Product Life Cycle Management and ETO Development for Valves and Actuators

Revision no. 00

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismüllerstraße 3 · 60314 Frankfurt, Germany

Page 1 of 1

14-10 EB 3007 EN

DECLARATION OF INCORPORATION

Declaration of Incorporation in Compliance with Machinery Directive 2006/42/EC

For the following product: Type 2420 Actuator

We certify that the Type 2420 Actuator is partly completed machine as defined in the Machinery Directive 2006/42/EC and that the safety requirements stipulated in Annex I, 1.1.2, 1.1.3, 1.1.5, 1.3.2, 1.3.4 and 1.3.7 are observed. The relevant technical documentation described in Annex VII, part B has been compiled.

Products we supply must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of the Machinery Directive 2006/42/EC.

Operators are obliged to install the products observing the accepted industry codes and practices (good engineering practice) as well as the mounting and operating instructions. Operators must take appropriate precautions to prevent hazards that could be caused by the process medium and operating pressure in the valve as well as by the signal pressure and moving parts.

The permissible limits of application and mounting instructions for the products are specified in the associated data sheets as well as the mounting and operating instructions; the documents are available in electronic form on the Internet at www.samsongroup.com.

For product descriptions refer to:

Type 42-20 Differential Pressure Regulator: Mounting and Operating Instructions EB 3007

Referenced technical standards and/or specifications:

- VCI, VDMA, VGB: "Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen, Mai 2018" [German only]
- VCI, VDMA, VGB: "Zusatzdokument zum Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen vom Mai 2018" [German only], based on DIN EN ISO 12100:2011-03

- See mounting and operating instructions for residual hazards.
- Also observe the referenced documents listed in the mounting and operating instructions.

Persons authorized to compile the technical file:

SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany Frankfurt am Main, 11 February 2022

Stephan Giesen Director

Product Management

Peter Scheermesser

i. V. P. Muner

Director

Product Life Cycle Management and ETO Development for Valves and Actuators

Revision no. 00

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismüllerstraße 3 · 60314 Frankfurt, Germany

Page 1 of 1

EB 3007 EN 14-11

DECLARATION OF INCORPORATION

Declaration of Incorporation in Compliance with Machinery Directive 2006/42/EC

For the following product:

Type 2425 Actuators

We certify that the Type 2425 Actuator is partly completed machine as defined in the Machinery Directive 2006/42/EC and that the safety requirements stipulated in Annex I, 1.1.2, 1.1.3, 1.1.5, 1.3.2, 1.3.4 and 1.3.7 are observed. The relevant technical documentation described in Annex VII, part B has been compiled.

Products we supply must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of the Machinery Directive 2006/42/EC.

Operators are obliged to install the products observing the accepted industry codes and practices (good engineering practice) as well as the mounting and operating instructions. Operators must take appropriate precautions to prevent hazards that could be caused by the process medium and operating pressure in the valve as well as by the signal pressure and moving parts.

The permissible limits of application and mounting instructions for the products are specified in the associated data sheets as well as the mounting and operating instructions; the documents are available in electronic form on the Internet at www.samsongroup.com.

For product descriptions refer to:

- Type 42-25 Differential Pressure Regulator: Mounting and Operating Instructions EB 3007
- Type 2422/2425 Excess Pressure Valve: Mounting and Operating Instructions EB 2549

Referenced technical standards and/or specifications:

- VCI, VDMA, VGB: "Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen, Mai 2018" [German only]
- VCI, VDMA, VGB: "Zusatzdokument zum Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen vom Mai 2018" [German only], based on DIN EN ISO 12100:2011-03

Comments:

- See mounting and operating instructions for residual hazards.
- Also observe the referenced documents listed in the mounting and operating instructions.

Persons authorized to compile the technical file:

SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany Frankfurt am Main, 11 February 2022

Stephan Gieser

Product Management

Peter Scheermesser

Director

Product Life Cycle Management and ETO Development for Valves and Actuators

Revision no. 00

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismüllerstraße 3 · 60314 Frankfurt, Germany

Page 1 of 1

14-12 **EB 3007 EN**

Certificates

EB 3007 EN 14-13

14-14 EB 3007 EN

15 Appendix

15.1 Tightening torques

Table 15-1: Tightening torque

Component	Width across flats	Valve size/actuator area	Tightening torque in Nm
Coupling nuts (11)	SW 36	All	120
Nuts and bolts (15)	-	40 to 640 cm ²	25
Nut (18)	SW 12	40 to 640 cm ²	40
Control line connection (20)	-	40 to 640 cm ²	22

15.2 Lubricant

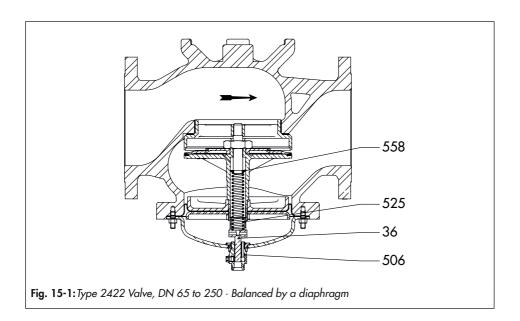
SAMSON's After-sales Service can support you concerning lubricants and sealants approved by SAMSON.

15.3 Tools

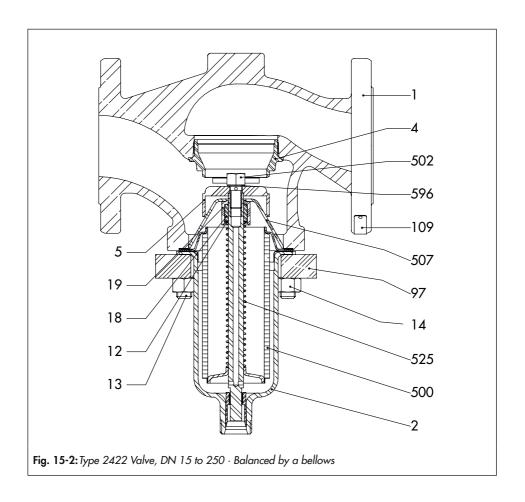
SAMSON's After-sales Service can support you concerning tools approved by SAM-SON.

15.4 Accessories

Control line kits, needle valves, condensation chambers and compression-type screw fittings can be supplied as required. These accessories are listed in > T 3095.


EB 3007 EN 15-1

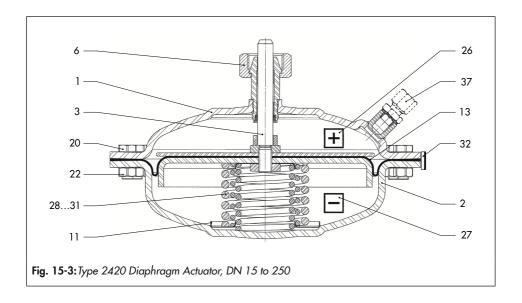
15.5 Spare parts


Legend for Fig. 15-1 and Fig. 15-2

- 1 Body
- 2 Bottom section
- 4 Seat
- 5 Plug
- 12 Washer
- 13 Bolt
- 14 Nut
- 18 Guide bushing
- 19 Guide tube
- 36 Nipple

- 97 Flange
- 109 Nameplate
- 500 Bellows
- 502 Balancing screw
- 506 Connecting nipple
- 507 Guide cap
- 525 Compression spring
- 558 Washer
- 596 Retaining washer

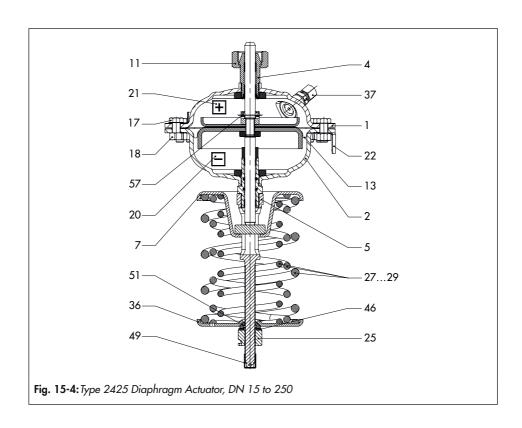
15-2 EB 3007 EN



EB 3007 EN 15-3

Appendix

Legend for Fig. 15-3


1	Diaphragm case assembly	22	Nut
2	Diaphragm case assembly	26	Adhesive label +
3	Diaphragm stem	27	Adhesive label -
6	Coupling nut	2831	Compression spring
11	Spring plate	32	Nameplate
13	Diaphragm	37	Screw joint with restriction
20	Bolt		

15-4 EB 3007 EN

Legend for Fig. 15-4

1	Diaphragm case assembly	21	Adhesive label +
2	Diaphragm case assembly	22	Nameplate
4	Nipple	25	Nut of set point adjuster
5	Guide nipple	2729	Set point springs
7	Inner spring plate	36	Outer spring plate
11	Coupling nut	37	Screw joint with restriction
13	Diaphragm	46	Axial needle bearing
17	Bolt	49	Сар
18	Nut	51	Washer
20	Adhesive label -	57	Dowel pin

EB 3007 EN 15-5

15.6 After-sales service

Contact SAMSON's After-sales Service for support concerning service or repair work or when malfunctions or defects arise.

E-mail address

You can reach our after-sales service at aftersalesservice@samsongroup.com.

Addresses of SAMSON AG and its subsidiaries

The addresses of SAMSON, its subsidiaries, representatives and service facilities worldwide can be found on our website

(> www.samsongroup.com) or in all SAMSON product catalogs.

Required specifications

Please submit the following details:

- Device type and valve size
- Valve balanced by a bellows or diaphragm
- Model number or material number.
- Upstream and downstream pressure
- Temperature and process medium
- Min. and max. flow rate in m³/h
- Is a strainer installed?
- Installation drawing showing the exact location of the regulator and all the additionally installed components (shut-off valves, pressure gauge etc.)

15-6 EB 3007 EN

EB 3007 EN

